scholarly journals Influence of Pain on Knee Joint Movement and Moment during the Stance Phase in Patients with Severe Bilateral Knee Osteoarthritis: A Pilot Study

Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 756
Author(s):  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki ◽  
Koichi Mori

Background and Objectives: The purpose of this study was to compare the side-to-side differences in knee joint movement and moment for the degree of pain in the walking stance phase in patients with bilateral knee osteoarthritis (KOA) of comparable severity. We hypothesized that knee joint movement and moment on the side with strong pain were lower compared with the side with weak pain. Materials and Methods: We included 11 patients diagnosed with bilateral severe KOA. In all patients’ left and right knees, the Kellgren–Lawrence radiographic scoring system grade was level 4, and the femorotibial angle and knee range of motion were equivalent. Following patients’ interviews with an orthopedic surgeon, we performed a comparative study with KOA with strong pain (KOAs) as the strong painful side and KOA with weak pain (KOAw) as the weak painful side. Data for changes in bilateral knee joint angles in three dimensions during the stance phase and bilateral knee sagittal and frontal moments exerted in the early and late stance phases were extracted from kinematics and kinetics analyses. Results: Three-dimensional joint movements in the knee joint were not significantly different in all phases between KOAs and KOAw. Knee extensor moment in the early stance phase in KOAs was significantly smaller than that in KOAw. Knee abductor moment in the early and late stance phase was not significantly different between KOAs and KOAw. Conclusions: Although we found no difference in joint motion in bilateral knee joints, knee extensor moment on the side with strong pain was decreased. In patients with bilateral severe KOA, it was suggested that the magnitude of knee pain contributed to the decrease in knee joint function.

Author(s):  
H Matsumoto ◽  
B B Seedhom

An apparatus was developed by means of which it was possible to move a cadaveric knee joint under a constant external force and to measure its movement in three dimensions using biplanar photography, to investigate mechanisms of ‘dynamic’ knee instabilities, such as the ‘pivot shift’ phenomenon. Two wire frameworks, one attached to the femur, the other to the tibia, defined a system of three mutually orthogonal axes. While the knee joint was moved under a given force, a series of biplanar photographs of the two frameworks were taken. This procedure was repeated after sectioning different ligaments simulating different injuries. The joint was finally fully disarticulated, but leaving the reference wire frameworks still attached to their respective bone. Another series of biplanar photographs of the femur and tibia were taken. From these two series of measurements, movements of the tibia with respect to the femur were calculated. With this two-step method, knee movements could be measured without damaging the knee structures before or during the actual measurement (which could change the knee movement itself). On validating the system, it was concluded that knee movement could be measured with sufficient accuracy for the analysis of knee instability.


2020 ◽  
Vol 44 (5) ◽  
pp. 314-322
Author(s):  
Jan Andrysek ◽  
Daniela García ◽  
Claudio Rozbaczylo ◽  
Carlos Alvarez-Mitchell ◽  
Rebeca Valdebenito ◽  
...  

Background: Prosthetic knee joint function is important in the rehabilitation of individuals with transfemoral amputation. Objectives: The objective of this study was to assess the gait patterns associated with two types of mechanical stance control prosthetic knee joints—weight-activated braking knee and automatic stance-phase lock knee. It was hypothesized that biomechanical differences exist between the two knee types, including a prolonged swing-phase duration and exaggerated pelvic movements for the weight-activated braking knee during gait. Study design: Prospective crossover study. Methods: Spatiotemporal, kinematic, and kinetic parameters were obtained via instrumented gait analysis for 10 young adults with a unilateral transfemoral amputation. Discrete gait parameters were extracted based on their magnitudes and timing. Results: A 1.01% ± 1.14% longer swing-phase was found for the weight-activated braking knee (p < 0.05). The prosthetic ankle push-off also occurred earlier in the gait cycle for the weight-activated braking knee. Anterior pelvic tilt was 3.3 ± 3.0 degrees greater for the weight-activated braking knee. This range of motion was also higher (p < 0.05) and associated with greater hip flexion angles. Conclusions: Stance control affects biomechanics primarily in the early and late stance associated with prosthetic limb loading and unloading. The prolonged swing-phase time for the weight-activated braking knee may be associated with the need for knee unloading to initiate knee flexion during gait. The differences in pelvic tilt may be related to knee stability and possibly the different knee joint stance control mechanisms. Clinical relevance Understanding the influence of knee function on gait biomechanics is important in selecting and improving treatments and outcomes for individuals with lower-limb amputations. Weight-activated knee joints may result in undesired gait deviations associated with stability in early stance-phase, and swing-phase initiation in the late stance-phase of gait.


2013 ◽  
Vol 16 (04) ◽  
pp. 1350018
Author(s):  
Susumu Ota ◽  
Ai Nakanishi ◽  
Hirotaka Sato ◽  
Seiji Akita ◽  
Kazunori Hase ◽  
...  

Walking with poles is one of the gait modification strategies for reducing external knee varus moments in people with medial knee osteoarthritis (OA). However, there are two types of pole techniques, Nordic walking (NW: pole back condition) and pole walking (PW: pole front condition). The purpose of this study was to investigate the differences in knee joint kinematics, and kinetics during level walking, and two types of walking with poles. A total of 22 subjects with a mean age of 21.2 years (SD: 1.3 years) participated. Three-dimensional gait analysis was conducted on level walking (LW), NW and PW. The first and second peaks of the knee kinematic and kinetic data and ground reaction forces were used. No significant differences were found between NW and PW in the knee kinematics and kinetics data. The second peak of the knee varus moment in NW and PW (0.34 and 0.33 Nm/kg, respectively) was significantly decreased compared to LW (0.42 Nm/kg, p < 0.01; Effect size = 0.70, p < 0.01; Effect size = 0.82). The first peak of the flexion moment in the knee during NW (1.2 Nm/kg) was significantly higher compared to LW (1.2 Nm/kg, p < 0.01; Effect size = 0.98). However, the present study could not clarify any different effect on the knee joint due to different instructions of the back pole and forward pole technique.


2019 ◽  
Vol 10 (3) ◽  
pp. 72-76
Author(s):  
Alexandr A. Akhpashev ◽  
Gleb V. Fursenko ◽  
Dmitry V. Skvortsov ◽  
Sergey N. Kaurkin

Phonoarthrography, vibration arthrography are non-invasive methods for assessing the condition of cartilage and the knee joint as a whole based on the sounds made by the joint movement. Acoustic sensors (accelerometers, microphones) are attached to the knee to measure the knee joint noise both in control groups (young adults and elderly subjects) and in patients with knee osteoarthropathies. Different authors propose different methods for attaching sensors, documenting and analyzing the joint sounds. The identified specific features allowed distinguishing between asymptomatic knee joints and those with osteoarthropathies. Acoustic signals were recorded and processed, and their frequency characteristics were determined and classified. The classification effectiveness correlated with the existing diagnostic tests and hence phonoarthrography and vibration arthrography can be qualified as a useful diagnostic aid.


Sign in / Sign up

Export Citation Format

Share Document