Frontal Plane Ankle Stiffness Increases with Weight-Bearing

2021 ◽  
pp. 110565
Author(s):  
Marie Matos ◽  
Eric J. Perreault ◽  
Daniel Ludvig
2017 ◽  
Vol 32 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Gretchen B Salsich ◽  
Barbara Yemm ◽  
Karen Steger-May ◽  
Catherine E Lang ◽  
Linda R Van Dillen

Objective: To investigate whether a novel, task-specific training intervention that focused on correcting pain-producing movement patterns was feasible and whether it would improve hip and knee kinematics, pain, and function in women with patellofemoral pain. Design: Prospective, non-randomized, within-group, double baseline, feasibility intervention study. Subjects: A total of 25 women with patellofemoral pain were enrolled. Intervention: The intervention, delivered 2×/week for six weeks, consisted of supervised, high-repetition practice of daily weight-bearing and recreational activities. Activities were selected and progressed based on participants’ interest and ability to maintain optimal alignment without increasing pain. Main measures: Primary feasibility outcomes were recruitment, retention, adherence, and treatment credibility (Credibility/Expectancy Questionnaire). Secondary outcomes assessing intervention effects were hip and knee kinematics, pain (visual analog scale: current, average in past week, maximum in past week), and function (Patient-Specific Functional Scale). Results: A total of 25 participants were recruited and 23 were retained (92% retention). Self-reported average daily adherence was 79% and participants were able to perform their prescribed home program correctly (reduced hip and knee frontal plane angles) by the second intervention visit. On average, treatment credibility was rated 25 (out of 27) and expectancy was rated 22 (out of 27). Hip and knee kinematics, pain, and function improved following the intervention when compared to the control phase. Conclusion: Based on the feasibility outcomes and preliminary intervention effects, this task-specific training intervention warrants further investigation and should be evaluated in a larger, randomized clinical trial.


2011 ◽  
Vol 105 (5) ◽  
pp. 2132-2149 ◽  
Author(s):  
Anindo Roy ◽  
Hermano I. Krebs ◽  
Christopher T. Bever ◽  
Larry W. Forrester ◽  
Richard F. Macko ◽  
...  

Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults.


2020 ◽  
Vol 20 (09) ◽  
pp. 2040012
Author(s):  
GEON KIM ◽  
JIHEE JUNG ◽  
YOUNGJOO CHA ◽  
JOSHUA (SUNG) H. YOU

Hyperpronation of the foot is believed to contribute to ankle hypermobility and associated stiffness reduction, but the underlying biomechanical mechanisms remain unknown. This study aimsed to investigate multidirectional ankle displacement and associated stiffness when a posterior–anterior impact force was applied to the posterior knee compartment. Forty healthy adults with and without foot hyperpronation were recruited. A three-dimensional motion capture system and force plates were used to acquire angular displacement and ankle joint moment data. The independent [Formula: see text]-test and Mann–Whitney [Formula: see text] test were used to compare the group differences in ankle angular displacement, moment, and stiffness. Spearman’s rho test was performed to determine the relationship between ankle angular displacement and stiffness. The hyperpronation group demonstrated significantly greater sagittal ([Formula: see text]) and frontal plane ([Formula: see text]) angular displacements and reduced sagittal plane ankle stiffness ([Formula: see text]) than the neutral group. The Spearman’s correlation analysis showed a close inverse relationship between the ankle angular displacement and stiffness, ranging from [Formula: see text] to [Formula: see text]. The biomechanical data in our study suggest that individuals with foot hyperpronation present with multidirectional hypermobility and a reduction in ankle stiffness. These factors contribute to an increased risk of ankle-foot injury in individuals with foot hyperpronation.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345-S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz

2004 ◽  
Vol 36 (Supplement) ◽  
pp. S345???S346
Author(s):  
Thomas C. Windley ◽  
Anthony S. Kulas ◽  
Randy J. Schmitz ◽  
David H. Perrin ◽  
Sandra J. Shultz

2012 ◽  
Vol 47 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Sae Yong Lee ◽  
Jay Hertel

Context: Clinically, lowering of the medial longitudinal arch is believed to be closely related to rearfoot eversion. However, the relationship between arch height and rearfoot eversion during gait is unclear. Objectives: (1) To examine the influence of 2 reference positions (weight-bearing neutral position [WBNP] and subtalar neutral position [STNP]) on maximum rearfoot eversion, tibial internal rotation, knee flexion, knee internal rotation, and dorsiflexion-plantar flexion of ankle joint measures during jogging and (2) to compare the relationships among static arch height, navicular drop, and the 2 maximum rearfoot eversion measures. Design: Crossover study. Setting: Gait laboratory. Patients or Other Participants: Thirty-three volunteers between 18 and 40 years of age. Intervention(s): Each participant stood on the treadmill in 2 static positions: WBNP and STNP. Kinematic data were obtained using a 10-camera motion analysis system (120 Hz) when participants jogged at 2.65 m/s on the treadmill in bare feet. Main Outcome Measure(s): Rearfoot and shank angular kinematics, navicular drop, and static arch height. Results: Maximum rearfoot eversion was greater (WBNP: 4.03° ± 2.58°, STNP: 10.91° ± 5.34°) when STNP was the static reference (P < .001). A strong correlation was seen between maximum STNP eversion and navicular drop (r = 0.842) but not between WBNP and navicular drop (r = 0.216). Differences were noted in dorsiflexion and knee kinematics during gait between the static references; however, the effect sizes were low, and the mean differences were smaller than 2°, which was less than 5% of total excursion during gait. Conclusions: Using STNP rather than WBNP as the reference position affects estimates of frontal-plane rearfoot movement but not other ankle or knee motions in jogging.


2013 ◽  
Vol 22 (3) ◽  
pp. 184-190 ◽  
Author(s):  
John H. Hollman ◽  
Jeffrey M. Hohl ◽  
Jordan L. Kraft ◽  
Jeffrey D. Strauss ◽  
Katie J. Traver

Context:Abnormal lower extremity kinematics during dynamic activities may be influenced by impaired gluteus maximus function.Objective:To examine whether hip-extensor strength and gluteus maximus recruitment are associated with dynamic frontal-plane knee motion during a jump-landing task.Design:Exploratory study.Setting:Biomechanics laboratory.Participants:40 healthy female volunteers.Main Outcome Measures:Isometric hip-extension strength was measured bilaterally with a handheld dynamometer. Three-dimensional hip and knee kinematics and gluteus maximus electromyography data were collected bilaterally during a jumplanding test. Data were analyzed with hierarchical linear regression and partial correlation coefficients (α = .05).Results:Hip motion in the transverse plane was highly correlated with knee motion in the frontal plane (partial r = .724). After controlling for hip motion, reduced magnitudes of isometric hip-extensor strength (partial r = .470) and peak gluteus maximus recruitment (partial r = .277) were correlated with increased magnitudes of knee valgus during the jump-landing task.Conclusion:Hip-extensor strength and gluteus maximus recruitment, which represents a measure of the muscle’s neuromuscular control, are both associated with frontal-plane knee motions during a dynamic weight-bearing task.


2017 ◽  
Vol 52 (6) ◽  
pp. 581-586 ◽  
Author(s):  
Abbey C. Thomas ◽  
Riann M. Palmieri-Smith

Context:  Lateral subchondral bone bruises (BBs) occur frequently with anterior cruciate ligament (ACL) injuries. These BBs are associated with pain during weight bearing, leading individuals to increase medial tibiofemoral loading to alleviate pain laterally. Increased medial tibiofemoral loading may precipitate the development or progression of posttraumatic osteoarthritis; however, no in vivo biomechanical data exist to confirm that lateral BBs increase medial tibiofemoral loading as measured by the external knee-adduction moment (KAM). Objective:  To determine whether lateral BBs after ACL injury increase the external KAM during walking. Design:  Descriptive laboratory study. Setting:  University research laboratory. Patients or Other Participants:  Eleven volunteers with an ACL injury (age = 20.36 ± 4.03 years, height = 177.60 ± 8.59 cm, mass = 79.70 ± 16.33 kg), 12 with an ACL injury and a lateral BB (ACL + BB; age = 19.25 ± 5.58 years, height = 170.71 ± 9.40 cm, mass = 66.79 ± 11.91 kg), and 12 healthy controls (age = 19.67 ± 5.19 years, height = 173.29 ± 11.58 cm, mass = 67.07 ± 11.25 kg) participated. Intervention(s):  We recorded peak KAM during 3 walking trials (1.1 ± 0.6 m/s) in which participants walked over a force platform located in the field of view of a motion-capture system. Main Outcome Measure(s):  Peak KAM was calculated during the first half of stance using standard inverse-dynamics analysis, averaged across trials, and examined via 1-way analysis of variance. Knee pain and function were determined from the International Knee Documentation Committee Subjective Knee Evaluation Form and compared among groups via the Kruskal-Wallis test. Results:  Peak KAM did not differ among groups (ACL injury = 0.14 ± 0.07 Nm·kg−1·m−1, ACL + BB = 0.21 ± 0.08 Nm·kg−1·m−1, control = 0.20 ± 0.08 Nm·kg−1·m−1; F2,35 = 3.243, P = .052). Knee-pain frequency and severity were greater in the ACL-injury (frequency = 2.55 ± 1.81, severity = 3.36 ± 1.75; both P < .001) and ACL + BB (frequency = 3.58 ± 2.81, severity = 4.08 ± 3.20; both P < .001) groups than in the control group (frequency = 0.00 ± 0.00, severity = 0.00 ± 0.00). Knee function was greater in the control group (100.00 ± 0.00) than in the ACL-injury (59.35 ± 17.31; P < .001) and ACL + BB (46.46 ± 25.85; P < .001) groups. Conclusions:  The ACL + BB groups did not walk with a greater external KAM than the ACL-injury or control groups. Thus, lateral tibiofemoral BB did not influence knee frontal-plane loading after ACL injury.


2017 ◽  
Vol 30 (05) ◽  
pp. 386-392 ◽  
Author(s):  
Philipp Lobenhoffer

AbstractFrontal plane varus or valgus deformity causes overload in the ipsilateral compartment and may induce and accelerate cartilage damage. Osteotomy around the knee should be considered in symptomatic constitutional and posttraumatic metaphyseal deformities of more than 3-degree deviation. Age, grade of osteoarthritis, obesity, and nicotine consumption are no exclusion criteria for osteotomy. For correction of varus deformity, biplanar open wedge osteotomy of the tibia with fixation by a plate fixator has proven to be a safe and stable construct allowing for early weight-bearing. Valgus deformities of the tibia can be treated by biplanar closed wedge osteotomy of the proximal tibia. For femur deformities closed wedge biplanar osteotomy and fixation with a specific plate fixator is an attractive solution reducing implant-related morbidity. Osteotomy around the knee may also be used to protect cartilage reconstruction and meniscus transplantation. Corrections in the sagittal plane may improve the anteroposterior stability of the knee significantly and can be combined with frontal plane corrections.


2021 ◽  
Author(s):  
Zoe Villamar ◽  
Eric J. Perreault ◽  
Daniel Ludvig

ABSTRACTAnkle sprains are the most common musculoskeletal injury, typically resulting from excessive inversion of the ankle. One way to prevent excessive inversion and maintain ankle stability is to generate a stiffness that is sufficient to resist externally imposed rotations. Frontal-plane ankle stiffness increases as participants place more weight on their ankle, but whether this effect is due to muscle activation or axial loading of the ankle is unknown. Identifying whether and to what extent axial loading affects ankle stiffness is important in understanding what role the passive mechanics of the ankle joint play in maintaining its stability. The objective of this study was to determine the effect of passive axial load on frontal-plane ankle stiffness. We had subjects seated in a chair as an axial load was applied to the ankle ranging from 10% to 50% body weight. Small rotational perturbations were applied to the ankle in the frontal plane to estimate stiffness. We found a significant, linear, 3-fold increase in ankle stiffness with axial load from the range of 0% bodyweight to 50% bodyweight. This increase could not be due to muscle activity as we observed no significant axial-load-dependent change in any of the recorded muscle activations. These results demonstrate that axial loading is a significant contributor to maintaining frontal-plane ankle stability, and that disruptions to the mechanism mediating this sensitivity of stiffness to axial loading may result in pathological cases of ankle instability.


Sign in / Sign up

Export Citation Format

Share Document