Reliability and Validity of Test Concepts for the Cross-Country Skiing Sprint

2006 ◽  
Vol 38 (3) ◽  
pp. 586-591 ◽  
Author(s):  
THOMAS ST??GGL ◽  
STEFAN LINDINGER ◽  
ERICH M??LLER
1988 ◽  
Vol 2 (4) ◽  
pp. 283-297 ◽  
Author(s):  
Brent S. Rushall ◽  
Marty Hall ◽  
Laurent Roux ◽  
Jack Sasseville ◽  
Amy C. Rushall

The purpose of this investigation was to assess the effects of instructions—to think particular types of thoughts—on the cross-country skiing performances of elite skiers. Eighteen members of the Canadian Cross-Country Ski Team served as subjects. Instructions were given to plan and think particular types of thoughts while skiing, namely task-relevant statements, mood words, and positive self-statements. Performances on a standard test track under thought control conditions were compared to similar efforts under “normal” (control) thinking. Thirteen subjects also recorded heart rates at the completion of each trial. A balanced order design of two replications of each condition was employed in each of the three experiments. Sixteen subjects improved in all conditions whereas two subjects improved in only one condition. Heart rates were marginally higher and statistically significant in each experimental condition compared to the control condition. Performance improvements of more than 3% were registered under each thought content condition, even though all subjects reported that they were not aware of any effort differential. That performance improvements of this magnitude could be achieved in athletes of such a caliber indicates the value of attempts to use the particular forms of thoughts employed in this study for improving cross-country skiing performance.


Author(s):  
Barbara Pellegrini ◽  
Øyvind Sandbakk ◽  
Thomas Stöggl ◽  
Matej Supej ◽  
Niels Ørtenblad ◽  
...  

AbstractCross-country (XC) ski races involve a variety of formats, two different techniques and tracks with highly variable topography and environmental conditions. In addition, XC skiing is a major component of both Nordic combined and biathlon competitions. Research in this area, both in the laboratory and field, encounters certain difficulties that may reduce the reliability and validity of the data obtained, as well as complicate comparisons between studies. Here, 13 international experts propose specific guidelines designed to enhance the quality of research and publications on XC skiing, as well as on the biathlon and Nordic combined skiing. We consider biomechanical (kinematic, kinetic and neuromuscular) and physiological methodology (at the systemic and/or muscle level), providing recommendations for standardization/control of the experimental setup. We describe the types of measuring equipment and technology that are most suitable in this context. Moreover, we also deal with certain aspects of nomenclature of the classical and skating sub-techniques. In addition to enhancing the quality of studies on XC skiing, Nordic combined and biathlon, our guidelines should also be of value for sport scientists and coaches in other disciplines where physiological and/or biomechanical measurements are performed in the laboratory and/or outdoors.


2019 ◽  
Vol 51 (4) ◽  
pp. 760-772 ◽  
Author(s):  
THOMAS STÖGGL ◽  
OLLI OHTONEN ◽  
MASAKI TAKEDA ◽  
NAOTO MIYAMOTO ◽  
CORY SNYDER ◽  
...  

2004 ◽  
Vol 38 (4) ◽  
pp. 506-506
Author(s):  
P Blackman

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2535
Author(s):  
Thomas Stöggl ◽  
Dennis-Peter Born

The aims of the study were to assess the robustness and non-reactiveness of wearable near-infrared spectroscopy (NIRS) technology to monitor exercise intensity during a real race scenario, and to compare oxygenation between muscle groups important for cross-country skiing (XCS). In a single-case study, one former elite XCS (age: 39 years, peak oxygen uptake: 65.6 mL/kg/min) was equipped with four NIRS devices, a high-precision global navigation satellite system (GNSS), and a heart rate (HR) monitor during the Vasaloppet long-distance XCS race. All data were normalized to peak values measured during incremental laboratory roller skiing tests two weeks before the race. HR reflected changes in terrain and intensity, but showed a constant decrease of 0.098 beats per minute from start to finish. Triceps brachii (TRI) muscle oxygen saturation (SmO2) showed an interchangeable pattern with HR and seems to be less affected by drift across the competition (0.027% drop per minute). Additionally, TRI and vastus lateralis (VL) SmO2 revealed specific loading and unloading pattern of XCS in uphill and downhill sections, while rectus abdominus (RA) SmO2 (0.111% drop per minute) reflected fatigue patterns occurring during the race. In conclusion, the present preliminary study shows that NIRS provides a robust and non-reactive method to monitor exercise intensity and fatigue mechanisms when applied in an outdoor real race scenario. As local exercise intensity differed between muscle groups and central exercise intensity (i.e., HR) during whole-body endurance exercise such as XCS, NIRS data measured at various major muscle groups may be used for a more detailed analysis of kinetics of muscle activation and compare involvement of upper body and leg muscles. As TRI SmO2 seemed to be unaffected by central fatigue mechanisms, it may provide an alternative method to HR and GNSS data to monitor exercise intensity.


Sign in / Sign up

Export Citation Format

Share Document