The role of ultimobranchial bodies in the modulation of the response of chick embryos to 1,25-dihydroxycholecalciferol

Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 87-94
Author(s):  
Roberto Narbaitz ◽  
Jaffar Soleimani Rad

Ultimobranchial bodies (UBBs) were dissected from 17-day-old chick embryos and grafted onto the chorioallantoic membrane of 8-day-old embryos. The embryos with UBB grafts as well as sham-grafted controls were injected on the 10th day of incubation with 100 ng 1,25(OH)2D3 dissolved in ethyl alcohol or with an equal volume of ethyl alcohol alone; embryos were sacrificed on the 13th day. Grafted UBBs showed ultrastructural characteristics typical of actively secreting glands. A histological study of the tibiae from all embryos showed that while the grafted embryos responded to the injection of 1,25(OH)2D3 with a peripheral rim of undermineralized bone trabeculae, sham-grafted embryos never did so. These results confirm the original hypothesis that the presence of differentiated UBBs is a precondition for the production of undermineralized bone (osteoid) by 1,25(OH)2D3. In a second series of experiments, similarly treated embryos were sacrificed on the 10th, 11th, 12th and 13th day; the levels of calcium and inorganic phosphate were determined in their blood. The injection of 1,25(OH)2D3 produced in all embryos hypercalcaemia and hypophosphataemia. However, the hypophosphataemic response was more prolonged in the embryos with UBB grafts than in sham-grafted ones. These results suggest that the grafted UBBs prolonged the hypophosphataemic response, probably by secreting calcitonin and thus reducing the rate of bone resorption. It is also probable that the prolonged hypophosphataemia produced or contributed to the undermineralization of the peripheral (subperiosteal) trabeculae.

2021 ◽  
Vol 22 (10) ◽  
pp. 5217
Author(s):  
Maria Laura de Souza Lima ◽  
Caroline Addison Carvalho Xavier de Medeiros ◽  
Gerlane Coelho Bernardo Guerra ◽  
Robson Santos ◽  
Michael Bader ◽  
...  

Background: The aim of this study was to evaluate the role of AT1 and AT2 receptors in a periodontal inflammation experimental model. Methods: Periodontal inflammation was induced by LPS/Porphyromonas gingivalis. Maxillae, femur, and vertebra were scanned using Micro-CT. Maxillae were analyzed histopathologically, immunohistochemically, and by RT-PCR. Results: The vertebra showed decreased BMD in AT1 H compared with WT H (p < 0.05). The femur showed increased Tb.Sp for AT1 H and AT2 H, p < 0.01 and p < 0.05, respectively. The Tb.N was decreased in the vertebra (WT H-AT1 H: p < 0.05; WT H-AT2 H: p < 0.05) and in the femur (WT H-AT1 H: p < 0.01; WT H-AT2 H: p < 0.05). AT1 PD increased linear bone loss (p < 0.05) and decreased osteoblast cells (p < 0.05). RANKL immunostaining was intense for AT1 PD and WT PD (p < 0.001). OPG was intense in the WT H, WT PD, and AT2 PD when compared to AT1 PD (p < 0.001). AT1 PD showed weak immunostaining for osteocalcin compared with WT H, WT PD, and AT2 PD (p < 0.001). AT1 H showed significantly stronger immunostaining for osteonectin in fibroblasts compared to AT2 H (p < 0.01). Conclusion: AT1 receptor knockout changed bone density, the quality and number of bone trabeculae, decreased the number of osteoblast cells, and increased osteonectin in fibroblasts.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


2001 ◽  
Vol 280 (5) ◽  
pp. L923-L929 ◽  
Author(s):  
James J. Cummings ◽  
Huamei Wang

We studied the role of cGMP in nitric oxide (NO)-induced changes in lung liquid production ( J v ) in chronically instrumented fetal sheep. Forty-five studies were done in which J v was measured by a tracer dilution technique. Left pulmonary arterial flow (Qlpa) was measured by a Doppler flow probe. There were two series of experiments. In the first, we gave 8-bromo-cGMP, a cGMP analog, by either the pulmonary vascular or intraluminal route; in the second, we used agents to inhibit or enhance endogenous cGMP activity. When infused directly into the pulmonary circulation, 8-bromo-cGMP significantly increased Qlpa but had no effect on J v. Conversely, when instilled into the lung liquid, 8-bromo-cGMP had no effect on Qlpa but significantly reduced J v. Inhibition of guanylate cyclase activity with methylene blue totally blocked, whereas phosphodiesterase inhibition with Zaprinast significantly enhanced, the effect of instilled NO on J v. Thus the reduction in lung liquid caused by NO appears to be mediated by cGMP, perhaps through a direct effect on the pulmonary epithelium.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


Sign in / Sign up

Export Citation Format

Share Document