scholarly journals Cluster Sets Attenuate Power Loss at Higher Intensities During the Back Squat Exercise

2018 ◽  
Vol 50 (5S) ◽  
pp. 419
Author(s):  
Will Jennings ◽  
Jason D. Stone ◽  
John D. Mata ◽  
J. Craig Garrison ◽  
Shiho Goto ◽  
...  
2019 ◽  
Vol 14 (5) ◽  
pp. 583-589 ◽  
Author(s):  
Jason D. Stone ◽  
Adam C. King ◽  
Shiho Goto ◽  
John D. Mata ◽  
Joseph Hannon ◽  
...  

Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS −21.6% [3.9%]; CS −12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.


2015 ◽  
Vol 2 (1) ◽  
pp. 76 ◽  
Author(s):  
J Sinclair ◽  
S Atkins ◽  
N Kudiersky ◽  
PJ Taylor ◽  
H Vincent

Purpose: The barbell squat is fundamental in strength and conditioning, with two principal variants; the back and front squat. Unfortunately, the propensity for injury is high particularly at the knee. The aim of the current investigation was examine the influence of front and back squat variations on patellofemoral joint load. Methods: Patellofemoral loads were obtained from thirty-five experienced male participants, who completed both back and front squats at 70% of 1 RM. Differences between squat conditions were examined using Bonferroni adjusted (P = .008) paired t-tests. Results: The results showed that significant differences (P < .008) in patellofemoral load were identified between both conditions with the highest load being experienced during the back squat exercise. Conclusions: Given the proposed relationship between the magnitude of the load experienced by the patellofemoral joint and associated injury pathology, the back squat appears to place lifters at greater risk from injury. Therefore, it may be prudent therefore for lifters who are predisposed to patellofemoral pain syndrome to utilize the front squat in their training.


2017 ◽  
Vol 01 (02) ◽  
pp. E80-E88 ◽  
Author(s):  
Luis Sánchez-Medina ◽  
Jesús Pallarés ◽  
Carlos Pérez ◽  
Ricardo Morán-Navarro ◽  
Juan González-Badillo

AbstractThe use of bar velocity to estimate relative load in the back squat exercise was examined. 80 strength-trained men performed a progressive loading test to determine their one-repetition maximum (1RM) and load-velocity relationship. Mean (MV), mean propulsive (MPV) and peak (PV) velocity measures of the concentric phase were analyzed. Both MV and MPV showed a very close relationship to %1RM (R2=0.96), whereas a weaker association (R2=0.79) and larger SEE (0.14 vs. 0.06 m·s−1) were found for PV. Prediction equations to estimate load from velocity were obtained. When dividing the sample into 3 groups of different relative strength (1RM/body mass), no differences were found between groups for the MPV attained against each %1RM. MV attained with the 1RM was 0.32±0.03 m·s−1. The propulsive phase accounted for ~82% of concentric duration at 40% 1RM, and progressively increased until reaching 100% at 1RM. Provided that repetitions are performed at maximal intended velocity, a good estimation of load (%1RM) can be obtained from mean velocity as soon as the first repetition is completed. This finding provides an alternative to the often demanding, time-consuming and interfering 1RM or nRM tests and allows implementing a velocity-based resistance training approach.


2016 ◽  
Vol 30 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Jonathan M. Oliver ◽  
Andreas Kreutzer ◽  
Shane C. Jenke ◽  
Melody D. Phillips ◽  
Joel B. Mitchell ◽  
...  
Keyword(s):  

2017 ◽  
Vol 12 (4) ◽  
pp. 463-469 ◽  
Author(s):  
James J. Tufano ◽  
Jenny A. Conlon ◽  
Sophia Nimphius ◽  
Lee E. Brown ◽  
Harry G. Banyard ◽  
...  

Purpose:To determine the effects of intraset rest frequency and training load on muscle time under tension, external work, and external mechanical power output during back-squat protocols with similar changes in velocity.Methods:Twelve strength-trained men (26.0 ± 4.2 y, 83.1 ± 8.8 kg, 1.75 ± 0.06 m, 1.88:0.19 one-repetition-maximum [1RM] body mass) performed 3 sets of 12 back squats using 3 different set structures: traditional sets with 60% 1RM (TS), cluster sets of 4 with 75% 1RM (CS4), and cluster sets of 2 with 80% 1RM (CS2). Repeated-measures ANOVAs were used to determine differences in peak force (PF), mean force (MF), peak velocity (PV), mean velocity (MV), peak power (PP), mean power (MP), total work (TW), total time under tension (TUT), percentage mean velocity loss (%MVL), and percentage peak velocity loss (%PVL) between protocols.Results:Compared with TS and CS4, CS2 resulted in greater MF, TW, and TUT in addition to less MV, PV, and MP. Similarly, CS4 resulted in greater MF, TW, and TUT in addition to less MV, PV, and MP than TS did. There were no differences between protocols for %MVL, %PVL, PF, or PP.Conclusions:These data show that the intraset rest provided in CS4 and CS2 allowed for greater external loads than with TS, increasing TW and TUT while resulting in similar PP and %VL. Therefore, cluster-set structures may function as an alternative method to traditional strength- or hypertrophy-oriented training by increasing training load without increasing %VL or decreasing PP.


2014 ◽  
Vol 28 (3) ◽  
pp. 636-642 ◽  
Author(s):  
Brendan R. Scott ◽  
Ben J. Dascombe ◽  
Jace A. Delaney ◽  
Nathan Elsworthy ◽  
Robert G. Lockie ◽  
...  

2014 ◽  
Vol 33 (2) ◽  
pp. 211-218 ◽  
Author(s):  
R.M. Thiele ◽  
E.C. Conchola ◽  
T.B. Palmer ◽  
J.M. DeFreitas ◽  
B.J. Thompson

2016 ◽  
Vol 37 (06) ◽  
pp. 448-456 ◽  
Author(s):  
D. Clark ◽  
M. Lambert ◽  
A. Hunter

Sign in / Sign up

Export Citation Format

Share Document