scholarly journals Passive Stretch Improves Insulin-stimulated Glucose Transport Together With Downregulation Of TXNIP In Rat Soleus Muscle

2020 ◽  
Vol 52 (7S) ◽  
pp. 597-597
Author(s):  
Hiroki Honda ◽  
Song-Gyu Ra ◽  
Hiroki Iizawa ◽  
Shihoko Nakashima ◽  
Yuki Tomiga ◽  
...  
1998 ◽  
Vol 139 (1) ◽  
pp. 118-122 ◽  
Author(s):  
G Dimitriadis ◽  
B Leighton ◽  
M Parry-Billings ◽  
C Tountas ◽  
S Raptis ◽  
...  

The effects of the diuretic furosemide on the sensitivity of glucose disposal to insulin were investigated in rat soleus muscle in vitro. At basal levels of insulin, the rates of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation and lactate formation were not affected significantly by furosemide (0.5 mmol/l). However, furosemide significantly decreased these rates at physiological and maximal levels of insulin. The contents of 2-deoxyglucose and glucose 6-phosphate in the presence of furosemide were not significantly different from those in control muscles at all levels of insulin studied. It is concluded that furosemide decreases the sensitivity of glucose utilization to insulin in skeletal muscle by directly inhibiting the glucose transport process.


2007 ◽  
Vol 210 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Anna R. S. Gomes ◽  
Anabelle Cornachione ◽  
Tania F. Salvini ◽  
Ana Cláudia Mattiello-Sverzut

1997 ◽  
Vol 4 (3) ◽  
pp. 205-212
Author(s):  
Teresa Torlińska ◽  
Józef Langfort ◽  
Paweł Maćkowiak ◽  
Tomasz Hryniewiecki ◽  
Hanna Kaciuba-Uściłko ◽  
...  

1987 ◽  
Vol 252 (4) ◽  
pp. E492-E499 ◽  
Author(s):  
T. Clausen ◽  
J. A. Flatman

To identify possible cause-effect relationships between changes in active Na+-K+ transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in sugar transport. Ouabain, at a concentration (10(-3) M) sufficient to block active Na+-K+ transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na+ loading in K+-free buffer, the return to K+-containing standard buffer caused marked stimulation of active Na+-K+ transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the Na+-K+ pump leads to decreased intracellular Na+ concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na+-K+ transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na+ influx via the Na+/H+-exchange system.


2005 ◽  
Vol 288 (6) ◽  
pp. E1062-E1066 ◽  
Author(s):  
David C. Wright ◽  
Paige C. Geiger ◽  
John O. Holloszy ◽  
Dong-Ho Han

Increases in contraction-stimulated glucose transport in fast-twitch rat epitrochlearis muscle are mediated by AMPK- and Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent signaling pathways. However, recent studies provide evidence suggesting that contraction-stimulated glucose transport in slow-twitch skeletal muscle is mediated through an AMPK-independent pathway. The purpose of the present study was to test the hypothesis that contraction-stimulated glucose transport in rat slow-twitch soleus muscle is mediated by an AMPK-independent/Ca2+-dependent pathway. Caffeine, a sarcoplasmic reticulum (SR) Ca2+-releasing agent, at a concentration that does not cause muscle contractions or decreases in high-energy phosphates, led to an ∼2-fold increase in 2-deoxyglucose (2-DG) uptake in isolated split soleus muscles. This increase in glucose transport was prevented by the SR calcium channel blocker dantrolene and the CAMK inhibitor KN93. Conversely, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an AMPK activator, had no effect on 2-DG uptake in isolated split soleus muscles yet resulted in an ∼2-fold increase in the phosphorylation of AMPK and its downstream substrate acetyl-CoA carboxylase. The hypoxia-induced increase in 2-DG uptake was prevented by dantrolene and KN93, whereas hypoxia-stimulated phosphorylation of AMPK was unaltered by these agents. Tetanic muscle contractions resulted in an ∼3.5-fold increase in 2-DG uptake that was prevented by KN93, which did not prevent AMPK phosphorylation. Taken in concert, our results provide evidence that hypoxia- and contraction-stimulated glucose transport is mediated entirely through a Ca2+-dependent mechanism in rat slow-twitch muscle.


2007 ◽  
Vol 32 (4) ◽  
pp. 701-710 ◽  
Author(s):  
Farah S.L. Thong ◽  
Jamie S.V. Lally ◽  
David J. Dyck ◽  
Felicia Greer ◽  
Arend Bonen ◽  
...  

The A1 adenosine receptor (A1AR) has been suggested to participate in insulin- and contraction-stimulated glucose transport in skeletal muscle, but the qualitative and quantitative nature of the effect are controversial. We sought to determine if A1AR is expressed in rat soleus muscle and then characterize its role in glucose transport in this muscle. A1AR mRNA and protein expression were determined by RT-PCR and Western blotting, respectively. To examine the role of adenosine in 3-O-methylglucose transport, isolated muscles were exposed to adenosine deaminase and α,β-methylene adenosine diphosphate to remove endogenous adenosine and were left unstimulated (basal) or stimulated with insulin. To assess the functional participation of A1AR in 3-O-methylglucose transport, muscles were incubated with A1-selective agonist and (or) antagonist in the absence of endogenous adenosine and with or without insulin. A1AR mRNA was expressed in soleus muscle and A1AR was present at the plasma membrane. Removal of endogenous adenosine reduced glucose transport in response to 100 μU/mL insulin (~50%). The A1-selective agonist, N6-cyclopentyladenosine, increased submaximal (100 μU/mL) insulin-stimulated glucose transport in a dose-dependent manner (0.001–1.0 μmol/L). This stimulatory effect was inhibited by the A1-selective receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine in a concentration-dependent manner (0.001–1.0 μmol/L). However, neither activation nor inhibition of A1AR altered basal or maximal (10 mU/mL) insulin-stimulated glucose transport. Our results suggest that adenosine contributes ~50% to insulin-stimulated muscle glucose transport by activating the A1AR. This effect is limited to increasing insulin sensitivity, but not to either basal or maximal insulin-stimulated glucose uptake in rat soleus muscle.


2004 ◽  
Vol 97 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Matthew P. O'Keefe ◽  
Felipe R. Perez ◽  
Julie A. Sloniger ◽  
Marc E. Tischler ◽  
Erik J. Henriksen

Hindlimb suspension (HS), a model of simulated weightlessness, enhances insulin action on glucose transport in unweighted rat soleus muscle. In the present study, we tested the hypothesis that these changes in glucose transport in 3- and 7-day HS soleus of juvenile, female Sprague-Dawley rats were due to increased functionality of insulin signaling factors, including insulin receptor (IR), IR substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3-kinase), and Akt. Insulin-stimulated (2 mU/ml) glucose transport was significantly ( P < 0.05) enhanced in 3- and 7-day HS soleus by 59 and 113%, respectively, compared with weight-bearing controls. Insulin-stimulated tyrosine phosphorylation of IR and Ser473 phosphorylation of Akt was not altered by unweighting. Despite decreased (34 and 64%) IRS-1 protein in 3- and 7-day HS soleus, absolute insulin-stimulated tyrosine phosphorylation of IRS-1 was not diminished, indicating relative increases in IRS-1 phosphorylation of 62 and 184%, respectively. In the 7-day HS soleus, this was accompanied by increased (47%) insulin-stimulated IRS-1 associated with the p85 subunit of PI3-kinase. Interestingly, the enhanced insulin-stimulated glucose transport in the unweighted soleus was not completely inhibited (89–92%) by wortmannin, a PI3-kinase inhibitor. Finally, protein expression and activation of p38 MAPK, a stress-activated serine/threonine kinase associated with insulin resistance, was decreased by 32 and 18% in 7-day HS soleus. These results indicate that the increased insulin action on glucose transport in the 7-day unweighted soleus is associated with increased insulin signaling through IRS-1 and PI3-kinase and decreased p38 MAPK protein expression. However, PI3-kinase-independent mechanisms must also play a small role in this adaptive response to HS.


1991 ◽  
Vol 70 (5) ◽  
pp. 2322-2327 ◽  
Author(s):  
E. J. Henriksen ◽  
K. J. Rodnick ◽  
C. E. Mondon ◽  
D. E. James ◽  
J. O. Holloszy

The purpose of this study was to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). One day after sciatic nerve sectioning, when decreases in the stimulation of soleus 2-deoxyglucose (2-DG) uptake by insulin (-51%, P less than 0.001), contractions (-29%, P less than 0.05), or insulin and contractions in combination (-40%, P less than 0.001) were observed, there was a slight (-18%, NS) decrease in GLUT-4 protein. By day 3 of denervation, stimulation of 2-DG uptake by insulin (-74%, P less than 0.001), contractions (-31%, P less than 0.001), or the two stimuli in combination (-59%, P less than 0.001), as well as GLUT-4 protein (-52%, P less than 0.001), was further reduced. Soleus muscle from hindlimb-suspended rats, which develops an enhanced capacity for insulin-stimulated glucose transport, showed muscle atrophy similar to denervated soleus but, in contrast, displayed substantial increases in GLUT-4 protein after 3 (+35%, P less than 0.05) and 7 days (+107%, P less than 0.001). These results indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. We conclude that muscle activity is an important factor in the regulation of GLUT-4 expression in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document