muscle progenitor cells
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanling Xuan ◽  
Mahmood Khan ◽  
Muhammad Ashraf

Abstract Background Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. A loss of dystrophin leads to severe and progressive muscle wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. Here, we investigated whether givinostat (Givi), a histone deacetylase inhibitor, with muscle differentiation properties could reprogram hiPSCs into muscle progenitor cells (MPC) for DMD treatment. Methods MPC were generated from hiPSCs by treatment with CHIR99021 and givinostat called Givi-MPC or with CHIR99021 and fibroblast growth factor as control-MPC. The proliferation and migration capacity were investigated by CCK-8, colony, and migration assays. Engraftment, pathological changes, and restoration of dystrophin were evaluated by in vivo transplantation of MPC. Conditioned medium from cultured MPC was collected and analyzed for extracellular vesicles (EVs). Results Givi-MPC exhibited superior proliferation and migration capacity compared to control-MPC. Givi-MPC produced less reactive oxygen species (ROS) after oxidative stress and insignificant expression of IL6 after TNF-α stimulation. Upon transplantation in cardiotoxin (CTX)-injured hind limb of Mdx/SCID mice, the Givi-MPC showed robust engraftment and restored dystrophin in the treated muscle than in those treated with control-MPC or human myoblasts. Givi-MPC significantly limited infiltration of inflammatory cells and reduced muscle necrosis and fibrosis. Additionally, Givi-MPC seeded the stem cell pool in the treated muscle. Moreover, EVs released from Givi-MPC were enriched in several miRNAs related to myoangiogenesis including miR-181a, miR-17, miR-210 and miR-107, and miR-19b compared with EVs from human myoblasts. Conclusions It is concluded that hiPSCs reprogrammed into MPC by givinostat possessing anti-oxidative, anti-inflammatory, and muscle gene-promoting properties effectively repaired injured muscle and restored dystrophin in the injured muscle.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Aiping Lu ◽  
Ping Guo ◽  
Haiying Pan ◽  
Chieh Tseng ◽  
Krishna M. Sinha ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1140
Author(s):  
Zhi Zhang ◽  
Hwa Kyung Nam ◽  
Spencer Crouch ◽  
Nan E. Hatch

Tissue nonspecific alkaline phosphatase (TNAP/Alpl) is associated with cell stemness; however, the function of TNAP in mesenchymal progenitor cells remains largely unknown. In this study, we aimed to establish an essential role for TNAP in bone and muscle progenitor cells. We investigated the impact of TNAP deficiency on bone formation, mineralization, and differentiation of bone marrow stromal cells. We also pursued studies of proliferation, mitochondrial function and ATP levels in TNAP deficient bone and muscle progenitor cells. We find that TNAP deficiency decreases trabecular bone volume fraction and trabeculation in addition to decreased mineralization. We also find that Alpl−/− mice (global TNAP knockout mice) exhibit muscle and motor coordination deficiencies similar to those found in individuals with hypophosphatasia (TNAP deficiency). Subsequent studies demonstrate diminished proliferation, with mitochondrial hyperfunction and increased ATP levels in TNAP deficient bone and muscle progenitor cells, plus intracellular expression of TNAP in TNAP+ cranial osteoprogenitors, bone marrow stromal cells, and skeletal muscle progenitor cells. Together, our results indicate that TNAP functions inside bone and muscle progenitor cells to influence mitochondrial respiration and ATP production. Future studies are required to establish mechanisms by which TNAP influences mitochondrial function and determine if modulation of TNAP can alter mitochondrial respiration in vivo.


Author(s):  
Ting-Yi Tien ◽  
Yih-Jer Wu ◽  
Cheng-Huang Su ◽  
Hsueh-Hsiao Wang ◽  
Chin-Ling Hsieh ◽  
...  

Objective: Circulating progenitor cells possess vasculogenesis property and participate in repair of vascular injury. Cx (connexin) 43—a transmembrane protein constituting gap junctions—is involved in vascular pathology. However, the role of Cx43 in smooth muscle progenitor cells (SPCs) remained unclear. Approach and Results: Human SPCs cultured from CD34 + peripheral blood mononuclear cells expressed smooth muscle cell markers, such as smooth muscle MHC (myosin heavy chain), nonmuscle MHC, calponin, and CD140B, and Cx43 was the most abundant Cx isoform. To evaluate the role of Cx43 in SPCs, short interference RNA was used to knock down Cx43 expression. Cellular activities of SPCs were reduced by Cx43 downregulation. In addition, Cx43 downregulation attenuated angiogenic potential of SPCs in hind limb ischemia mice. Protein array and ELISA of the supernatant from SPCs showed that IL (interleukin)-6, IL-8, and HGF (hepatocyte growth factor) were reduced by Cx43 downregulation. Simultaneously, Cx43 downregulation reduced the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Akt (protein kinase B) pathway and reactivation of NF-κB and Akt using betulinic acid, and SC79 could restore the secretion of growth factors and cytokines. Moreover, FAK (focal adhesion kinase)-Src (proto-oncogene tyrosine-protein kinase Src) activation was increased by Cx43 downregulation, and inactivation of Akt–NF-κB could be restored by Src inhibitor (PP2), indicating that Akt–NF-κB inactivated by Cx43 downregulation arose from FAK-Src activation. Finally, the depressed cellular activities and secretion of SPCs after Cx43 downregulation were restored by FAK inhibitor PF-562271 or PP2. Conclusions: SPCs possess angiogenic potential to repair ischemic tissue mainly through paracrine effects. Gap junction protein Cx43 plays an important role in regulating cellular function and paracrine effects of SPCs through FAK-Src axis.


Author(s):  
Imadeldin Yahya ◽  
Gabriela Morosan-Puopolo ◽  
Beate Brand-Saberi

Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.


2020 ◽  
Vol 34 (5) ◽  
pp. 6837-6853 ◽  
Author(s):  
Jinhuan Song ◽  
Chaojie Wang ◽  
Denglu Long ◽  
Ziguang Li ◽  
Lingsen You ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1830 ◽  
Author(s):  
Hiroyuki Yamakawa ◽  
Dai Kusumoto ◽  
Hisayuki Hashimoto ◽  
Shinsuke Yuasa

Skeletal muscle comprises 30–40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.


2020 ◽  
Author(s):  
Hasan Abbas ◽  
Lindsey A. Olivere ◽  
Michael E. Padgett ◽  
Cameron A. Schmidt ◽  
Brian F. Gilmore ◽  
...  

AbstractPeripheral artery disease (PAD) is nearly as common as coronary artery disease, but few effective treatments exist, and it is associated with significant morbidity and mortality. Although PAD studies have focused on the vascular response to ischemia, skeletal muscle cells play a critically important role in determining the phenotypic manifestation of PAD. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs, or satellite cells) in a murine model of hind limb ischemia (HLI) resulted in a complete absence of normal muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to ischemic muscle of control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7- or 28-days after HLI in ex vivo force measurement studies. A dramatic increase in adipose infiltration was observed 28 days after HLI in Pax7Δ mice, which replaced functional muscle. To investigate the mechanism of this adipogenic change, mice with inhibition of fibro/adipogenic precursors (FAPs), another pool of MPCs, were subjected to HLI. Inhibition of FAPs decreased muscle adipose fat but increased fibrosis. MPCs cultured from mouse muscle tissue failed to form myotubes in vitro following depletion of satellite cells in vivo, and they displayed an increased propensity to differentiate into fat in adipogenic medium. Importantly, this phenotype was recapitulated in patients with critical limb ischemia (CLI), the most severe form of PAD. Skeletal muscle samples from CLI patients demonstrated an increase in adipose deposition in more ischemic regions of muscle, which corresponded with a decrease in the number of satellite cells in those regions. Collectively, these data demonstrate that Pax7+ MPCs are required for normal muscle regeneration after ischemic injury, and they suggest that targeting muscle regeneration may be an important therapeutic approach to prevent muscle degeneration in PAD.


Sign in / Sign up

Export Citation Format

Share Document