Pharmacological effects of the novel dopamine uptake inhibitor 1-(2-(bis(4-fluorophenyl)-methoxy)ethyl)-4-(3-phenylpropyl) piperazine dihydrochloride (I-893) on the central nervous system.

1991 ◽  
Vol 98 (2) ◽  
pp. 121-141 ◽  
Author(s):  
Tsuyoshi NAGASE ◽  
Kei HOTTA ◽  
Shigemichi MORITA ◽  
Ken SAKAI ◽  
Mikio YAMANE ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 120
Author(s):  
Anis Daou

The vaccination for the novel Coronavirus (COVID-19) is undergoing its final stages of analysis and testing. It is an impressive feat under the circumstances that we are on the verge of a potential breakthrough vaccination. This will help reduce the stress for millions of people around the globe, helping to restore worldwide normalcy. In this review, the analysis looks into how the new branch of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) came into the forefront of the world like a pandemic. This review will break down the details of what COVID-19 is, the viral family it belongs to and its background of how this family of viruses alters bodily functions by attacking vital human respiratory organs, the circulatory system, the central nervous system and the gastrointestinal tract. This review also looks at the process a new drug analogue undergoes, from (i) being a promising lead compound to (ii) being released into the market, from the drug development and discovery stage right through to FDA approval and aftermarket research. This review also addresses viable reasoning as to why the SARS-CoV-2 vaccine may have taken much less time than normal in order for it to be released for use.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
You Zhai ◽  
Guanzhang Li ◽  
Tao Jiang

Abstract Background Glioma is the most common and fatal type of nerve neoplasm in the central nervous system. Several biomarkers have been considered for prognosis prediction, which is not accurate enough. We aimed to carry out a gene signature related to the expression of immune checkpoints which was enough for its performance in prediction. Methods Gene expression of immune checkpoints in TGGA database was filtrated. The 5 selected genes underwent verification by COX and Lasso-COX regression. Next, the selected genes were included to build a novel signature for further analysis. Results Patients were sub-grouped into high and low risk according to the novel signature. Immune response, clinicopathologic characters, and survival showed significant differences between those 2 groups. Terms including “naive,” “effector,” and “IL-4” were screened out by GSEA. The results showed strong relevance between the signature and immune response. Conclusions We constructed a gene signature with 5 immune checkpoints. The signature predicted survival effectively. The novel signature performed more functional than previous biomarkers.


2020 ◽  
Vol 17 (3) ◽  
pp. 1142-1152 ◽  
Author(s):  
Karl E. Carlström ◽  
Praveen K. Chinthakindi ◽  
Belén Espinosa ◽  
Faiez Al Nimer ◽  
Elias S. J. Arnér ◽  
...  

Abstract The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1–CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform. The novel sulfoximine CH-3 was the most promising candidate and selected for further comparison in vivo and later an experimental model for traumatic brain injury (TBI). CH-3 and DMF displayed comparable capacity to activate Nrf2 and downstream transcripts in vitro, but with less off-target effects on HIF1 from CH-3. This was verified in cultured microglia and oligodendrocytes (OLs) and subsequently in vivo in rats. Following TBI, DMF lowered the number of leukocytes in blood and also decreased axonal degeneration. CH-3 preserved or increased the number of pre-myelinating OL. While both CH-3 and DMF activated Nrf2, CH-3 showed less off-target effects and displayed more selective OL associated effects. Further studies with Nrf2-acting compounds are promising candidates to explore potential myelin protective or regenerative effects in demyelinating disorders.


1982 ◽  
Vol 60 (5) ◽  
pp. 715-719 ◽  
Author(s):  
K. Ramabadran ◽  
C. Suaudeau ◽  
J. J. C. Jacob

The effects of N-methylnaloxone following subcutaneous and intracerebroventricular administrations on nociception were investigated using the hot plate technique. Unlike naloxone, subcutaneous administration of N-methylnaloxone did not enhance the nociceptive reactions. In contrast, intracerebroventricular injection of N-methylnaloxone produced antinociception and tremor. Compared with naloxone, N-methylnaloxone was very weak in precipitating the signs of abstinence in mice rendered acutely dependent on morphine. Two factors, poor penetration into the central nervous system and steric hindrance, might render N-methylnaloxone very weak and hence both these factors must be taken into consideration while analyzing the effects following quaternary derivatives of opioid antagonists.


2008 ◽  
Vol 6 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Agata Siwek ◽  
Monika Wujec ◽  
Maria Dobosz ◽  
Ewa Jagiełło-Wójtowicz ◽  
Anna Chodkowska ◽  
...  

AbstractBy the reaction of 2-methyl-furan-3-carboxylic acid hydrazide with isothiocyanates, 1-[(2-methyl-furan-3-yl)carbonyl]-4-substituted thiosemicarbazides 1 were obtained. Further cyclization with 2% NaOH led to the formation of 3-(2-methyl-furan-3-yl)-4-substituted-Δ2-1,2,4-triazoline-5-thiones 2. The pharmacological effects of 2 on the central nervous system in mice were investigated. Strong antinociceptive properties of the investigated derivatives were observed in a wide range of doses.


Sign in / Sign up

Export Citation Format

Share Document