A fully automated method of human identification based on dental panoramic radiographs using a convolutional neural network

Author(s):  
Young Hyun Kim ◽  
Eun-Gyu Ha ◽  
Kug Jin Jeon ◽  
Chena Lee ◽  
Sang-Sun Han

Objectives: This study aimed to develop a fully automated human identification method based on a convolutional neural network (CNN) with a large-scale dental panoramic radiograph (DPR) dataset. Methods: In total, 2,760 DPRs from 746 subjects who had 2 to 17 DPRs with various changes in image characteristics due to various dental treatments (tooth extraction, oral surgery, prosthetics, orthodontics, or tooth development) were collected. The test dataset included the latest DPR of each subject (746 images) and the other DPRs (2,014 images) were used for model training. A modified VGG16 model with two fully connected layers was applied for human identification. The proposed model was evaluated with rank-1, –3, and −5 accuracies, running time, and gradient-weighted class activation mapping (Grad-CAM)–applied images. Results: This model had rank-1,–3, and −5 accuracies of 82.84%, 89.14%, and 92.23%, respectively. All rank-1 accuracy values of the proposed model were above 80% regardless of changes in image characteristics. The average running time to train the proposed model was 60.9 sec per epoch, and the prediction time for 746 test DPRs was short (3.2 sec/image). The Grad-CAM technique verified that the model automatically identified humans by focusing on identifiable dental information. Conclusion: The proposed model showed good performance in fully automatic human identification despite differing image characteristics of DPRs acquired from the same patients. Our model is expected to assist in the fast and accurate identification by experts by comparing large amounts of images and proposing identification candidates at high speed.

Author(s):  
Yuchun Fang ◽  
Zhengyan Ma ◽  
Zhaoxiang Zhang ◽  
Xu-Yao Zhang ◽  
Xiang Bai

Multi-task learning and deep convolutional neural network (CNN) have been successfully used in various fields. This paper considers the integration of CNN and multi-task learning in a novel way to further improve the performance of multiple related tasks. Existing multi-task CNN models usually empirically combine different tasks into a group which is then trained jointly with a strong assumption of model commonality. Furthermore, traditional approaches usually only consider small number of tasks with rigid structure, which is not suitable for large-scale applications. In light of this, we propose a dynamic multi-task CNN model to handle these problems. The proposed model directly learns the task relations from data instead of subjective task grouping. Due to its flexible structure, it supports task-wise incremental training, which is useful for efficient training of massive tasks. Specifically, we add a new task transfer connection (TTC) between the layers of each task. The learned TTC is able to reflect the correlation among different tasks guiding the model dynamically adjusting the multiplexing of the information among different tasks. With the help of TTC, multiple related tasks can further boost the whole performance for each other. Experiments demonstrate that the proposed dynamic multi-task CNN model outperforms traditional approaches.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changming Wu ◽  
Heshan Yu ◽  
Seokhyeong Lee ◽  
Ruoming Peng ◽  
Ichiro Takeuchi ◽  
...  

AbstractNeuromorphic photonics has recently emerged as a promising hardware accelerator, with significant potential speed and energy advantages over digital electronics for machine learning algorithms, such as neural networks of various types. Integrated photonic networks are particularly powerful in performing analog computing of matrix-vector multiplication (MVM) as they afford unparalleled speed and bandwidth density for data transmission. Incorporating nonvolatile phase-change materials in integrated photonic devices enables indispensable programming and in-memory computing capabilities for on-chip optical computing. Here, we demonstrate a multimode photonic computing core consisting of an array of programable mode converters based on on-waveguide metasurfaces made of phase-change materials. The programmable converters utilize the refractive index change of the phase-change material Ge2Sb2Te5 during phase transition to control the waveguide spatial modes with a very high precision of up to 64 levels in modal contrast. This contrast is used to represent the matrix elements, with 6-bit resolution and both positive and negative values, to perform MVM computation in neural network algorithms. We demonstrate a prototypical optical convolutional neural network that can perform image processing and recognition tasks with high accuracy. With a broad operation bandwidth and a compact device footprint, the demonstrated multimode photonic core is promising toward large-scale photonic neural networks with ultrahigh computation throughputs.


Author(s):  
Shi-bo Pan ◽  
Di-lin Pan ◽  
Nan Pan ◽  
Xiao Ye ◽  
Miaohan Zhang

Traditional gun archiving methods are mostly carried out through bullets’ physics or photography, which are inefficient and difficult to trace, and cannot meet the needs of large-scale archiving. Aiming at such problems, a rapid archival technology of bullets based on graph convolutional neural network has been studied and developed. First, the spot laser is used to take the circle points of the bullet rifling traces. The obtained data is filtered and noise-reduced to make the corresponding line graph, and then the dynamic time warping (DTW) algorithm convolutional neural network model is used to perform the processing on the processed data. Not only is similarity matched, the rapid matching of the rifling of the bullet is also accomplished. Comparison of experimental results shows that this technology has the advantages of rapid archiving and high accuracy. Furthermore, it can be carried out in large numbers at the same time, and is more suitable for practical promotion and application.


Sign in / Sign up

Export Citation Format

Share Document