scholarly journals Effect of Copper Ions upon the Sorption of Amino Acids onto a Fumed Silica Surface

2007 ◽  
Vol 25 (1-2) ◽  
pp. 71-80 ◽  
Author(s):  
Nataliya M. Vlasova ◽  
Ol'ga V. Markitan
1965 ◽  
Vol 13 (02) ◽  
pp. 477-483
Author(s):  
Alwin B. Bogert

SummaryExperiments were conducted to determine why different lots of Borate Buffer reagent affect the clot lysis times obtained in the fibrinolytic assay of Streptokinase. Minerals naturally occurring in distilled water were screened individually to determine their influence on lysis. Copper was found to have a very pronounced effect in this regard on the fibrinolytic system in that low levels reduce the lysis time and high levels increase it.


2016 ◽  
Vol 17 (1) ◽  
pp. 88-92
Author(s):  
I.S. Protsak ◽  
E.M. Pakhlov ◽  
V.A. Tertykh

This paper presents the results of studies of dimethyl carbonate interaction with sites of the fumed silica surface. The investigations were performed in a vacuum quartz cuvette using IR spectroscopy method. Chemical interaction of dimethyl carbonate with sites of the dehydrated silica surface was shown to occur at temperature of 200 °C and higher, chemisorption processes take place involving both structural silanol groups and siloxane bridges on the surface.


2015 ◽  
Vol 16 (4) ◽  
pp. 700-705
Author(s):  
I.F. Myronyuk ◽  
V.I. Mandzyuk ◽  
V.M. Sachko ◽  
Yu.O. Kyluk

The article explores the structure, morphology and conductive properties of composite material SiO2 – C using XRD, SAXS, low-temperature nitrogen adsorption, and impedance spectroscopy methods. It is set that SiO2 – C composite obtained by thermolytic decomposition of D-lactose, previously chemisorbed on fumed silica nanoparticles surface, has an open porous structure, in which mesopores of 6-12 nm in size are dominate. At weight ratio SiO2/C = 5/1 nanocrystallites of carbon phase in form of lamellar sheets of 0,4 × 0,4 × 5,0 nm3 in size contact with entire silica surface that results in composite material conductivity is 49 Оhm-1·m-1.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 792 ◽  
Author(s):  
Elena Badetti ◽  
Loris Calgaro ◽  
Laura Falchi ◽  
Alessandro Bonetto ◽  
Cinzia Bettiol ◽  
...  

The increasing concern about antibiotic-resistance has led to the search for alternative antimicrobial agents. In this effort, different metal oxide nanomaterials are currently under investigation, in order to assess their effectiveness, safety and mode of action. This study focused on CuO nanoparticles (CuO NPs) and was aimed at evaluating how the properties and the antimicrobial activity of these nanomaterials may be affected by the interaction with ligands present in biological and environmental media. Ligands can attach to the surface of particles and/or contribute to their dissolution through ligand-assisted ion release and the formation of complexes with copper ions. Eight natural amino acids (L-Arg, L-Asp, L-Glu, L-Cys, L-Val, L-Leu, L-Phe, L-Tyr) were chosen as model molecules to investigate these interactions and the toxicity of the obtained materials against the Gram-positive bacterium Staphylococcus epidermidis ATCC 35984. A different behavior from pristine CuO NPs was observed, depending on the aminoacidic side chain. These results were supported by physico-chemical and colloidal characterization carried out by means of Fourier-Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis (TGA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and light scattering techniques (Dynamic Light Scattering (DLS), Electrophoretic Light Scattering (ELS) and Centrifugal Separation Analysis (CSA).


Sign in / Sign up

Export Citation Format

Share Document