Experimental and Numerical Investigations of Steel Profiles with Intumescent Coating Adjacent to Space-Enclosing Elements in Fire

2015 ◽  
Vol 6 (4) ◽  
pp. 237-246 ◽  
Author(s):  
Peter Kraus ◽  
Martin Mensinger ◽  
Florian Tabeling ◽  
Peter Schaumann

In this paper, the research program “Optimized use of intumescent coating systems on steel members” is presented. The aim of the project is to quantify the influence of space-enclosing elements on the thermal behavior of supporting steel members. Those elements partially result in a restrained expansion of the fire protection system. Experimental investigations on coated beams and columns directly connected to space-enclosing elements are presented. Additionally, numerical simulations are performed for temperature field calculations of steel elements with intumescent coating. As a new development, the numerical model takes into account the expansion process of the intumescent coating.

2012 ◽  
Vol 204-208 ◽  
pp. 877-880
Author(s):  
Guang Yong Wang ◽  
Na Wang

A heat transfer finite element model for the temperature analysis of space grid structures considering the conduction and protection thickness of the steel members in fire is proposed, and the temperature field of a typical grid structure is analyzed by using the proposed model. The results show that the proposed model is reasonable.


2021 ◽  
Vol 11 (23) ◽  
pp. 11291
Author(s):  
Donatella de Silva ◽  
Naveed Alam ◽  
Ali Nadjai ◽  
Emidio Nigro ◽  
Faris Ali

Slim floor systems are very common nowadays and various types are currently being used for the construction of high-rise buildings and car parks. Concrete in slim floor beams encases the steel beam section which helps to improve their fire resistance. Despite their higher fire resistance, several fire protection materials like intumescent coatings are often used to achieve a higher fire resistance where desired. The thermal properties and behaviour of various intumescent coating materials were previously studied through experimental investigations. This paper presents finite element analyses to simulate the response of unprotected and protected slim floor beams in fire using different simulation tools. For this purpose, fire tests conducted on unprotected slim floor beams and intumescent coating materials are modelled using research and commercial software. Results from the analyses are compared and verified with the available test data. These validated models are later combined to study the behaviour of protected slim floor beams in fire. Results from the study show that the research and the commercial software replicate the behaviour of slim floor beams and protection materials with good accuracy. Due to the presence of the intumescent coating, the protected slim floor beams displayed a better fire resistance as the temperature of the steel part remained below 400 °C even after 60-min of standard heating. The protected slim floor beams continued to support the external loads even after 120 min of heating.


2009 ◽  
Vol 69-70 ◽  
pp. 333-337 ◽  
Author(s):  
Li Jun Yang ◽  
M.L. Wang ◽  
Yang Wang ◽  
J. Tang ◽  
Yan Bin Chen

Water-jet guided laser micromachining is the new development orientation of laser machining. This paper set up the numerical model on the action between the water-jet guided laser and the material. By using the software ANSYS, simulated the processing of the water-jet guided laser micromachining. This paper gave the investigation on the machining laws and the distributing of temperature fielding in processing of water-jet guided laser micromachining. And the results of the correlative experiment prove the model aright. The result provided the theoretical foundation for the next research on the water-jet guided laser machining.


2016 ◽  
Vol 7 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Peter Schaumann ◽  
Florian Tabeling ◽  
Waldemar Weisheim

Purpose This paper aims to present numerical investigations regarding the heating behaviour of steel elements protected by an intumescent coating with an adjacent trapezoidal steel sheet. Design/methodology/approach For this purpose, a three-dimensional numerical model of a coated I-section profile is developed in Abaqus taking into account the restrained foaming process of the intumescent coating due to the adjacent member explicitly. Findings After the validation of the numerical model against own fire tests, the steel temperatures of a coated I-section profile with and without an adjacent trapezoidal steel sheet, resulting from fire exposure according to ISO-834, are compared to demonstrate the influence of the steel sheet in detail. Originality/value The main objective is to evaluate the influence of an unprotected trapezoidal steel sheet on the temperatures of coated I-section profiles.


2000 ◽  
Vol 9 (3) ◽  
pp. 215-216
Author(s):  
Paul R. DeCicco
Keyword(s):  

2009 ◽  
Vol 131 (1) ◽  
Author(s):  
A. Aviv ◽  
Y. Blyakhman ◽  
O. Beeri ◽  
G. Ziskind ◽  
R. Letan

Thermal mixing and stratification are explored numerically and experimentally in a cylindrical tank, which simulates a storage of water heated by a solar collector. The tank is 70cm in height and 24cm in diameter. The inlet and outlet are vertical and located off the centerline of the tank. The study is conducted in a transient mode, namely, the tank is filled with hot water, and as the hot water is being withdrawn, the tap water replaces it in a stratified way or by mixing. The flowrates of 2l∕min, 3l∕min, 5l∕min and 7l∕min, which correspond to superficial velocities of 4.35cm∕min, 6.52cm∕min, 10.87cm∕min, and 15.2cm∕min, are explored. Temperature of hot water ranges within 40–50°C, while the tap water is about 25–27°C. Installation of one and two horizontal baffles above the inlet is examined. Simultaneous experimental and numerical investigations are performed. In the experiment, both flow visualization and temperature measurements are used. Three-dimensional transient numerical simulations are done using the FLUENT 6 software. Validation of the numerical model is achieved by comparison with the experimental results. Then, the numerical model is applied to a study of various possible changes in the system. The results show that at low flowrates, up to a superficial velocity of about 11cm∕min through the tank, the baffles have no effect on tap water mixing with the stored hot water. At higher flowrates, a single horizontal baffle prevents the mixing and preserves the desired stratified temperature distribution in the storage tank.


2014 ◽  
Vol 941-944 ◽  
pp. 1871-1875 ◽  
Author(s):  
Nikolay I. Vatin ◽  
Tatiana Nazmeeva ◽  
Roman Guslinscky

Nowadays cold bent steel thermal сold-bent С-profile is widely used in building construction but we still have some little studied questions in the fields of thermal conductivity, air permeability, resistibility and corrosion behavior of the profile. Cold-bent notched С-profile is used for interior exterior panel members. Lengthwise notches made chequerwise in the profile walls increase the distance of heat flow and decrease heat conductivity and eliminate cold bridges that is why the profile is called “thermal profile”. Cold-bent profile made by cold bending requires alternate approach when engineering structures are designed and maintained. The approach means thin walls’ and the profile special form’ impact on the bearing capacity and stability of the structures should be taken into account. In spite of the wide use of cold-bent notched C-profile in building frameworks, we see lack of information on how the notches influence the bearing capacity and stability of structures. There are no official normative documents on calculation and designing of cold-bent notched profile structures. We carry out theoretical and experimental investigations on global buckling and bearing capacity of steel members of C-shaped notched profiles of different cross-sections area. We carry out theoretical and experimental investigations on heat current passing through the thermal profile structure is held with the use of testing bed.


Sign in / Sign up

Export Citation Format

Share Document