scholarly journals Analysis of r-protein and RNA conformation of 30S subunit intermediates in bacteria

RNA ◽  
2015 ◽  
Vol 21 (7) ◽  
pp. 1323-1334 ◽  
Author(s):  
Nathan Napper ◽  
Gloria M. Culver
Keyword(s):  
Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
S. Tumminia ◽  
J.F. Hainfeld ◽  
J.S. Wall

Success in protein-free deposition of native nucleic acid molecules from solutions of selected ionic conditions prompted attempts for high resolution imaging of nucleic acid interactions with proteins, not attainable by conventional EM. Since the nucleic acid molecules can be visualized in the dark-field STEM mode without contrasting by heavy atoms, the established linearity between scattering cross-section and molecular weight can be applied to the determination of their molecular mass (M) linear density (M/L), mass distribution and radius of gyration (RG). Determination of these parameters promotes electron microscopic imaging of biological macromolecules by STEM to a quantitative analytical level. This technique is applied to study the mechanism of 16S rRNA folding during the assembly process of the 30S ribosomal subunit of E. coli. The sequential addition of protein S4 which binds to the 5'end of the 16S rRNA and S8 and S15 which bind to the central domain of the molecule leads to a corresponding increase of mass and increased coiling of the 16S rRNA in the core particles. This increased compactness is evident from the decrease in RG values from 114Å to 91Å (in “ribosomal” buffer consisting of 10 mM Hepes pH 7.6, 60 mM KCl, 2 m Mg(OAc)2, 1 mM DTT). The binding of S20, S17 and S7 which interact with the 5'domain, the central domain and the 3'domain, respectively, continues the trend of mass increase. However, the RG values of the core particles exhibit a reverse trend, an increase to 108Å. In addition, the binding of S7 leads to the formation of a globular mass cluster with a diameter of about 115Å and a mass of ∽300 kDa. The rest of the mass, about 330 kDa, remains loosely coiled giving the particle a “medusa-like” appearance. These results provide direct evidence that 16S RNA undergoes significant structural reorganization during the 30S subunit assembly and show that its interactions with the six primary binding proteins are not sufficient for 16S rRNA coiling into particles resembling the native 30S subunit, contrary to what has been reported in the literature.


2000 ◽  
Vol 122 (29) ◽  
pp. 7130-7131 ◽  
Author(s):  
Sarah J. Luchansky ◽  
Scott J. Nolan ◽  
Anne M. Baranger

Biochemistry ◽  
1989 ◽  
Vol 28 (14) ◽  
pp. 5847-5855 ◽  
Author(s):  
Florence Baudin ◽  
Marylene Mougel ◽  
Pascale Romby ◽  
Flore Eyermann ◽  
Jean Pierre Ebel ◽  
...  

2018 ◽  
Author(s):  
A.K. Sarkar ◽  
J. Sarzynska ◽  
A. Lahiri
Keyword(s):  

2012 ◽  
Vol 41 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Raheleh Salari ◽  
Chava Kimchi-Sarfaty ◽  
Michael M. Gottesman ◽  
Teresa M. Przytycka

2019 ◽  
Vol 116 (16) ◽  
pp. 7813-7818 ◽  
Author(s):  
Jie Zhou ◽  
Laura Lancaster ◽  
John Paul Donohue ◽  
Harry F. Noller

The elongation factor G (EF-G)–catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon–anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.


2001 ◽  
Vol 382 (7) ◽  
pp. 1001-1006 ◽  
Author(s):  
Fotini Leontiadou ◽  
Dimitra Triantafillidou ◽  
Theodora Choli-Papadopoulou

Abstract A putative operon of the ribosomal proteins S20 and Thx has been determined in a 1.4 kb sequenced region of T. thermophilus genomic DNA. Both genes have a promoter sequence 29 nt upstream of ORF1, possess their own ShineDalgarno motifs (GGAG) and are separated by only 9 nucleotides, a feature characteristic of the compact Thermus thermophilus genome. This is a novel arrangement, since Thx is unique to the Thermus bacteria and in all other prokaryotes the S20 gene is monocistronic. Our results, in conjunction with the recent finding that Thx is located on the top of the head of the 30S subunit in a cavity between multiple RNA elements stabilizing them with its positive charge, corroborate the observation that thermophilic ribosomes require constituents with special features for their stabilization at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document