scholarly journals Dual-level autoregulation of the E. coli DeaD RNA helicase via mRNA stability and Rho-dependent transcription termination

RNA ◽  
2020 ◽  
Vol 26 (9) ◽  
pp. 1160-1169
Author(s):  
Sandeep Ojha ◽  
Chaitanya Jain
Author(s):  
Sandeep Ojha ◽  
Chaitanya Jain

ABSTRACTDEAD-box proteins (DBPs) are RNA remodeling factors associated with RNA helicase activity that are found in nearly all organisms. Despite extensive studies on the mechanisms used by DBPs to regulate RNA function, very little is known about how DBPs themselves are regulated. In this work, we have analyzed the expression and regulation of DeaD/CsdA, the largest of the DBPs in Escherichia coli (E. coli). We show that deaD transcription initiates 838 nts upstream of the start of the coding region. We have also found that DeaD is autoregulated through a negative feedback mechanism that operates both at the level of mRNA stability and Rho-dependent transcription termination, and this regulation is dependent upon the 5’ untranslated region (5’ UTR). These findings suggest that DeaD might be regulating the conformation of its own mRNA through its RNA helicase activity to facilitate ribonuclease and Rho access to its 5’UTR.


2019 ◽  
Vol 431 (6) ◽  
pp. 1088-1097 ◽  
Author(s):  
Steen Pedersen ◽  
Thilde Bagger Terkelsen ◽  
Mette Eriksen ◽  
Magnus Krarup Hauge ◽  
Casper Carstens Lund ◽  
...  

1978 ◽  
pp. 163-169
Author(s):  
Max Gottesman ◽  
Sankar Adhya ◽  
Don Court ◽  
Asis Das

2020 ◽  
Vol 11 ◽  
Author(s):  
Md. Hafeezunnisa ◽  
Ranjan Sen

One of the major ways of acquiring multidrug resistance in bacteria is via drug influx and efflux pathways. Here, we show that E. coli with compromised Rho-dependent transcription termination function has enhanced broad-spectrum antibiotic susceptibility, which arises from the inefficient TolC-efflux process and increased permeability of the membrane. The Rho mutants have altered morphology, distinct cell surface, and increased levels of lipopolysaccharide in their outer membrane, which might have rendered the TolC efflux pumps inefficient. These alterations are due to the upregulations of poly-N-acetyl-glucosamine and lipopolysaccharide synthesis operons because of inefficient Rho functions. The Rho mutants are capable of growing on various dipeptides and carbohydrate sources, unlike their WT counterpart. Dipeptides uptake arises from the upregulations of the di-peptide permease operon in these mutants. The metabolomics of the Rho mutants revealed the presence of a high level of novel metabolites. Accumulation of these metabolites in these Rho mutants might titrate out the TolC-efflux pumps, which could further reduce their efficiency. We conclude that the transcription termination factor, Rho, regulates the broad-spectrum antibiotic susceptibility of E. coli through multipartite pathways in a TolC-dependent manner. The involvement of Rho-dependent termination in multiple pathways and its association with antibiotic susceptibility should make Rho-inhibitors useful in the anti-bacterial treatment regimen.


2000 ◽  
Vol 182 (23) ◽  
pp. 6630-6637 ◽  
Author(s):  
Chin Li ◽  
Yi Ping Tao ◽  
Lee D. Simon

ABSTRACT Transcription of the clpP-clpX operon ofEscherichia coli leads to the production of two different sizes of transcripts. In log phase, the level of the longer transcript is higher than the level of the shorter transcript. Soon after the onset of carbon starvation, the level of the shorter transcript increases significantly, and the level of the longer transcript decreases. The longer transcript consists of the entireclpP-clpX operon, whereas the shorter transcript contains the entire clpP gene but none of the clpXcoding sequence. The RpoH protein is required for the increase in the level of the shorter transcript during carbon starvation. Primer extension experiments suggest that there is increased usage of the ς32-dependent promoter of the clpP-clpXoperon within 15 min after the start of carbon starvation. Expression of the clpP-clpX operon from the promoters upstream of theclpP gene decreases to a very low level by 20 min after the onset of carbon starvation. Various pieces of evidence suggest, though they do not conclusively prove, that production of the shorter transcript may involve premature termination of the longer transcript. The half-life of the shorter transcript is much less than that of the longer transcript during carbon starvation. E. coli rpoBmutations that affect transcription termination efficiency alter the ratio of the shorter clpP-clpX transcript to the longer transcript. The E. coli rpoB3595 mutant, with an RNA polymerase that terminates transcription with lower efficiency than the wild type, accumulates a lower percentage of the shorter transcript during carbon starvation than does the isogenic wild-type strain. In contrast, the rpoB8 mutant, with an RNA polymerase that terminates transcription with higher efficiency than the wild type, produces a higher percentage of the shorter clpP-clpXtranscript when E. coli is in log phase. These and other data are consistent with the hypothesis that the shorter transcript results from premature transcription termination during production of the longer transcript.


1974 ◽  
Vol 133 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Louis W. Lim ◽  
David Kennell

Cell ◽  
1992 ◽  
Vol 68 (5) ◽  
pp. 989-994 ◽  
Author(s):  
Susan L. Sullivan ◽  
Max E. Gottesman

2020 ◽  
Vol 22 (4) ◽  
pp. 378-384
Author(s):  
Tuom T.T Truong ◽  
Thu M.T. Dao ◽  
Trang P.T Phan ◽  
Hoang D Nguyen ◽  
Dung H Nguyen ◽  
...  

Introduction: G-quadurplex (G4) formation plays a role in many biological processes such as replication, transcription, translation and telomeric maintenance. Stabilization of G4 structure by peptide has recently emerged as a potential approach in the regulation of protein expression. In this study, we reported on regulation of cyan fluorescent protein (CFP) expression by the interaction of G4 and RNA helicase associated with AU-rich elements (RHAU) peptide in E. coli. Methods: A sequence of TTGGGTGGGTGGGTGGGT (formed into G4 structure) was genetically applied to cfp gene as a reporter gene (g4-cfp). Both g4-cfp and DHX36 (or ΔDHX36) genes were cloned to pET-Duet1 vector that allowed to simultaneously express both G4-CFP protein and RHAU (or ΔRHAU) protein under IPTG inducer. Results: The level of G4-CFP expression in the presence of RHAU (pD64) was around 2-fold and 3-fold lower than that of G4-CFP expression in the presence of ΔRHAU (pD65) and G4-CFP expression alone (pD21), respectively. Conclusion: RHAU might selectively bind G4 structure of mRNA of G4-CFP, resulting in inhibition of G4-CFP expression in E. coli. The G4 and RHAU peptide interaction would provide a promising approach for inhibition of gene expression in many biomedical applications.  


Sign in / Sign up

Export Citation Format

Share Document