scholarly journals T-hairpin structure found in the RNA element involved in piRNA biogenesis

RNA ◽  
2022 ◽  
pp. rna.078967.121
Author(s):  
Naomi Takase ◽  
Maina Otsu ◽  
Shigeki Hirakata ◽  
Hirotsugu Ishizu ◽  
Mikiko C. Siomi ◽  
...  

PIWI-interacting RNAs (piRNAs) repress transposons to protect the germline genome from DNA damage caused by transposon transposition. In Drosophila, the Traffic jam (Tj) mRNA is consumed to produce piRNA in its 3′ UTR. A cis element located within the 3′-UTR, Tj-cis, is necessary for piRNA biogenesis. In this study, we analyzed the structure of the Tj-cis RNA, a 100 nt RNA corresponding to the Tj-cis element, by the SHAPE and NMR analyses and found that a stable hairpin structure formed in the 5′ half of the Tj-cis RNA. The tertiary structure of the 16 nt stable hairpin was analyzed by NMR, and a novel stem-loop structure, the T-hairpin, was found. In the T-hairpin, four uridine residues are exposed to the solvent, suggesting that this stem loop is the target of Yb protein, a Tudor domain-containing piRNA biogenesis factor. The piRNA biogenesis assay showed that both the T-hairpin and the 3′ half are required for the function of the Tj-cis element, suggesting that both the T-hairpin and the 3′ half are recognized by Yb protein.

2017 ◽  
Vol 199 (11) ◽  
Author(s):  
Carly Ching ◽  
Kevin Gozzi ◽  
Björn Heinemann ◽  
Yunrong Chai ◽  
Veronica G. Godoy

ABSTRACT In the nosocomial opportunistic pathogen Acinetobacter baumannii, RecA-dependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii. Here, we identify a structured 5′ untranslated region (UTR) in the recA transcript which serves as a cis-regulatory element. We show that a predicted stem-loop structure in this 5′ UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5′ UTR influences intracellular RecA protein levels and, in vivo, impairing the formation of the stem-loop structure of the recA 5′ UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5′ UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen. IMPORTANCE Acinetobacter baumannii is an opportunistic pathogen quickly gaining antibiotic resistances. Mutagenesis and antibiotic resistance acquisition are linked to the DNA damage response (DDR). However, how the DDR is regulated in A. baumannii remains unknown, since unlike most bacteria, A. baumannii does not follow the regulation of the Escherichia coli paradigm. In this study, we have started to uncover the mechanisms regulating the novel A. baumannii DDR. We have found that a cis-acting 5′ UTR regulates recA transcript stability, RecA protein levels, and DNA damage-induced phenotypic variation. Though 5′ UTRs are known to provide stability to transcripts in bacteria, this is the first example in which it regulates a bimodal DDR response through recA transcript stabilization, potentially enabling cells to have enough RecA for survival and genetic variability.


2004 ◽  
Vol 171 (4S) ◽  
pp. 256-257
Author(s):  
Kazunori Haga ◽  
Ataru Sazawa ◽  
Toru Harabayashi ◽  
Nobuo Shinohara ◽  
Minoru Nomoto ◽  
...  

2011 ◽  
Vol 33 (4) ◽  
pp. 337-346
Author(s):  
Hong-Gang WANG ◽  
Huan MA ◽  
Zhu LI ◽  
Bin ZHANG ◽  
Xiang-Yang JING ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 121
Author(s):  
André Miranda ◽  
Tiago Santos ◽  
Eric Largy ◽  
Carla Cruz

We have designed AS1411-N6, a derivative of the nucleolin (NCL)-binding aptamer AS1411, by adding six nucleotides to the 5′-end that are complementary to nucleotides at the 3′-end forcing it into a stem-loop structure. We evaluated by several biophysical techniques if AS1411-N6 can adopt one or more conformations, one of which allows NCL binding. We found a decrease of polymorphism of G-quadruplex (G4)-forming sequences comparing to AS1411 and the G4 formation in presence of K+ promotes the duplex folding. We also studied the binding properties of ligands TMPyP4, PhenDC3, PDS, 360A, and BRACO-19 in terms of stability, binding, topology maintenance of AS1411-N6, and NCL recognition. The melting experiments revealed promising stabilizer effects of PhenDC3, 360A, and TMPyP4, and the affinity calculations showed that 360A is the most prominent affinity ligand for AS1411-N6 and AS1411. The affinity determined between AS1411-N6 and NCL denoting a strong interaction and complex formation was assessed by PAGE in which the electrophoretic profile of AS1411-N6 showed bands of the dimeric form in the presence of the ligands and NCL.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
John T. Loh ◽  
Aung Soe Lin ◽  
Amber C. Beckett ◽  
Mark S. McClain ◽  
Timothy L. Cover

ABSTRACTHelicobacter pyloriCagA is a secreted effector protein that contributes to gastric carcinogenesis. Previous studies showed that there is variation amongH. pyloristrains in the steady-state levels of CagA and that a strain-specific motif downstream of thecagAtranscriptional start site (the +59 motif) is associated with both high levels of CagA and premalignant gastric histology. ThecagA5′ untranslated region contains a predicted stem-loop-forming structure adjacent to the +59 motif. In the current study, we investigated the effect of the +59 motif and the adjacent stem-loop oncagAtranscript levels andcagAmRNA stability. Using site-directed mutagenesis, we found that mutations predicted to disrupt the stem-loop structure resulted in decreased steady-state levels of both thecagAtranscript and the CagA protein. Additionally, these mutations resulted in a decreasedcagAmRNA half-life. Mutagenesis of the +59 motif without altering the stem-loop structure resulted in reduced steady-statecagAtranscript and CagA protein levels but did not affectcagAtranscript stability.cagAtranscript stability was not affected by increased sodium chloride concentrations, an environmental factor known to augmentcagAtranscript levels and CagA protein levels. These results indicate that both a predicted stem-loop structure and a strain-specific +59 motif in thecagA5′ untranslated region influence the levels ofcagAexpression.


2000 ◽  
Vol 74 (17) ◽  
pp. 7762-7771 ◽  
Author(s):  
J. Rodney Brister ◽  
Nicholas Muzyczka

ABSTRACT The single-stranded adeno-associated virus type 2 (AAV) genome is flanked by terminal repeats (TRs) that fold back on themselves to form hairpinned structures. During AAV DNA replication, the TRs are nicked by the virus-encoded Rep proteins at the terminal resolution site (trs). This origin function apparently requires three sequence elements, the Rep binding element (RBE), a small palindrome that comprises a single tip of an internal hairpin within the TR (RBE′), and the trs. Previously, we determined the sequences at the trs required for Rep-mediated cleavage and demonstrated that the trs endonuclease reaction occurs in two discrete steps. In the first step, the Rep DNA helicase activity unwinds the TR, thereby extruding a stem-loop structure at thetrs. In the second step, Rep transesterification activity cleaves the trs. Here we investigate the contribution of the RBE and RBE′ during this process. Our data indicate that Rep is tethered to the RBE in a specific orientation duringtrs nicking. This orientation appears to align Rep on the AAV TR, allowing specific nucleotide contacts with the RBE′ and directing nicking to the trs. Accordingly, alterations in the polarity or position of the RBE relative to the trsgreatly inhibit Rep nicking. Substitutions within the RBE′ also reduce Rep specific activity, but to a lesser extent. Interestingly, Rep interactions with the RBE and RBE′ during nicking seem to be functionally distinct. Rep contacts with the RBE appear necessary for both the DNA helicase and trs cleavage steps of the endonuclease reaction. On the other hand, RBE′ contacts seem to be required primarily for TR unwinding and formation of thetrs stem-loop structure, not cleavage. Together, these results suggest a model of Rep interaction with the AAV TR during origin nicking through a tripartite cleavage signal comprised of the RBE, the RBE′, and the trs.


Sign in / Sign up

Export Citation Format

Share Document