tudor domain
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 57)

H-INDEX

31
(FIVE YEARS 4)

RNA ◽  
2022 ◽  
pp. rna.078967.121
Author(s):  
Naomi Takase ◽  
Maina Otsu ◽  
Shigeki Hirakata ◽  
Hirotsugu Ishizu ◽  
Mikiko C. Siomi ◽  
...  

PIWI-interacting RNAs (piRNAs) repress transposons to protect the germline genome from DNA damage caused by transposon transposition. In Drosophila, the Traffic jam (Tj) mRNA is consumed to produce piRNA in its 3′ UTR. A cis element located within the 3′-UTR, Tj-cis, is necessary for piRNA biogenesis. In this study, we analyzed the structure of the Tj-cis RNA, a 100 nt RNA corresponding to the Tj-cis element, by the SHAPE and NMR analyses and found that a stable hairpin structure formed in the 5′ half of the Tj-cis RNA. The tertiary structure of the 16 nt stable hairpin was analyzed by NMR, and a novel stem-loop structure, the T-hairpin, was found. In the T-hairpin, four uridine residues are exposed to the solvent, suggesting that this stem loop is the target of Yb protein, a Tudor domain-containing piRNA biogenesis factor. The piRNA biogenesis assay showed that both the T-hairpin and the 3′ half are required for the function of the Tj-cis element, suggesting that both the T-hairpin and the 3′ half are recognized by Yb protein.


2022 ◽  
pp. 101558
Author(s):  
Ryan Dale Marcum ◽  
Joseph Hsieh ◽  
Maksim Giljen ◽  
Emily Justice ◽  
Nicolas Daffern ◽  
...  

2021 ◽  
Author(s):  
Marc A.J. Morgan ◽  
Irina K. Popova ◽  
Anup Vaidya ◽  
Jonathan M. Burg ◽  
Matthew R. Marunde ◽  
...  

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Author(s):  
Lei Qiu ◽  
Ze Li ◽  
Li Zhang ◽  
Tong-Sheng Zhang ◽  
Shun-Juan Hu ◽  
...  

In this study, we used Beauveria bassiana as a biological model to report the role of BbTdp1 in entomopathogenic fungi. Our findings indicated that BbTdp1 contributed significantly to cell development, the cell cycle, and virulence in B. bassiana . In addition, deletion of BbTdp1 led to drastic fluctuations in the transcriptional profile. BbTdp1 can be developed as a novel target for B. bassiana development and pathogenicity, which also provides a framework for the study of Tdp1 in other fungi.


2021 ◽  
Author(s):  
Ryan Dale Marcum ◽  
Joseph Hsieh ◽  
Maksim Giljen ◽  
Yongbo Zhang ◽  
Ishwar Radhakrishnan

Chromatin-modifying complexes containing histone deacetylase (HDAC) activities play critical roles in the regulation of gene transcription in eukaryotes. These complexes are thought to lack intrinsic DNA-binding activity, but according to a well-established paradigm, they are recruited via protein-protein interactions by gene-specific transcription factors and post-translational histone modifications to their sites of action on the genome. The mammalian Sin3L/Rpd3L complex, comprising more than a dozen different polypeptides, is an ancient HDAC complex found in diverse eukaryotes. The subunits of this complex harbor conserved domains and motifs of unknown structure and function. Here we show that Sds3, a constitutively associated subunit critical for the proper functioning of the complex, harbors a type of Tudor domain that we designate the capped Tudor domain (CTD). Unlike canonical Tudor domains that bind modified histones, the Sds3 CTD binds to nucleic acids that can form higher-order structures such as G-quadruplexes, and shares similarities with the knotted Tudor domain of the Esa1 histone acetyltransferase (HAT) that was previously shown to bind single-stranded RNA. Our findings expand the range of macromolecules capable of recruiting the Sin3L/Rpd3L complex and draws attention to potentially new roles for this HDAC complex in transcription biology.


2021 ◽  
Author(s):  
Elisabeth A Marnik ◽  
Miguel Vasconcelos Almeida ◽  
P Giselle Cipriani ◽  
George Chung ◽  
Edoardo Caspani ◽  
...  

LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize Vasa to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. LOTR-1's Z-granule association requires its Tudor domain, but both LOTUS and Tudor deletions affect brood size when coupled with a knockdown of the Vasa homolog glh-1. In addition to interacting with the germ-granule components WAGO-1, PRG-1 and DEPS-1, we identified a Tudor-dependent association with ZNFX-1. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and Mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work suggests that LOTR-1 acts in a conserved mechanism that brings small RNA generating mechanisms towards the 3' ends of small RNA templates or precursors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingfeng Niu ◽  
Zhe Song ◽  
Kai Tang ◽  
Lixian Chen ◽  
Lisi Wang ◽  
...  

AbstractIn plants, RNA-directed DNA methylation (RdDM) is a well-known de novo DNA methylation pathway that involves two plant-specific RNA polymerases, Pol IV and Pol V. In this study, we discovered and characterized an RdDM factor, RDM15. Through DNA methylome and genome-wide siRNA analyses, we show that RDM15 is required for RdDM-dependent DNA methylation and siRNA accumulation at a subset of RdDM target loci. We show that RDM15 contributes to Pol V-dependent downstream siRNA accumulation and interacts with NRPE3B, a subunit specific to Pol V. We also show that the C-terminal tudor domain of RDM15 specifically recognizes the histone 3 lysine 4 monomethylation (H3K4me1) mark. Structure analysis of RDM15 in complex with the H3K4me1 peptide showed that the RDM15 tudor domain specifically recognizes the monomethyllysine through an aromatic cage and a specific hydrogen bonding network; this chemical feature-based recognition mechanism differs from all previously reported monomethyllysine recognition mechanisms. RDM15 and H3K4me1 have similar genome-wide distribution patterns at RDM15-dependent RdDM target loci, establishing a link between H3K4me1 and RDM15-mediated RdDM in vivo. In summary, we have identified and characterized a histone H3K4me1-specific binding protein as an RdDM component, and structural analysis of RDM15 revealed a chemical feature-based lower methyllysine recognition mechanism.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding tudor domain containing 10, TDRD10, when comparing primary tumors of the breast to the tissue of origin, the normal breast. TDRD10 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of TDRD10 in primary tumors of the breast was correlated with post-progression survival in patients with basal, luminal B, and HER2+ subtype cancer, demonstrating a relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. TDRD10 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


2021 ◽  
pp. 100506
Author(s):  
Jie Ren ◽  
Hongwei Yao ◽  
Wanhui Hu ◽  
Sarah Perrett ◽  
Weibin Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document