Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens

2006 ◽  
Vol 102 (3) ◽  
pp. 162-170 ◽  
Author(s):  
Putu Supartana ◽  
Tsutomu Shimizu ◽  
Masahiro Nogawa ◽  
Hidenari Shioiri ◽  
Tadashi Nakajima ◽  
...  
2018 ◽  
Vol 22 ◽  
pp. 293-298
Author(s):  
S. I. Mykhalska ◽  
A. G. Komisarenko ◽  
V. M. Kurchii ◽  
O. M. Tishchenko

Aim. To optimize the agrobacterium-mediated method of winter wheat transformation (Triticum aestivum L.); to select the conditions and period of inoculation to effectively transfer the genes during pollination. Methods. Agrobacterium-mediated in planta genetic transformation of winter wheat (Triticum aestivum L.) during pollination. Results. The conditions for agrobacterium-mediated transformation method of winter wheat during natural (frequency pollination was 1 %) and non-natural (frequency pollination was 4 %) pollination were defined. Conclusions. The possibility of integrating transgenes into the genome of winter wheat plants by the method of Agrobacterium-mediated transformation in planta in the process of forced and natural pollination is demonstrated. It is found that the transformation efficiency to a large extent depends on the plant genotype and the method of carrying out the transformation procedure. The selection of transgenic plants under water deficit conditions allowed to identify the plants with functional transgene. The signs of functioning transgene have been remaining in the next generation of genetically modified winter wheat. Keywords: Triticum aestivum L., Agrobacterium-mediated transformation in planta, transgenic plants, seeds.


2017 ◽  
Vol 214 ◽  
pp. 174-179 ◽  
Author(s):  
Yong-yan Zhang ◽  
Dong-min Zhang ◽  
Yun Zhong ◽  
Xiao-jun Chang ◽  
Min-lun Hu ◽  
...  

2005 ◽  
Vol 100 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Putu Supartana ◽  
Tsutomu Shimizu ◽  
Hidenari Shioiri ◽  
Masahiro Nogawa ◽  
Masayuki Nozue ◽  
...  

2017 ◽  
Vol 53 (No. 4) ◽  
pp. 133-143 ◽  
Author(s):  
M. Niazian ◽  
S.A. Sadat Noori ◽  
P. Galuszka ◽  
S.M.M. Mortazavian

Gene transformation can be done in direct and indirect (Agrobacterium-mediated) ways. The most efficient method of gene transformation to date is Agrobacterium-mediated method. The main problem of Agrobacterium-method is that some plant species and mutant lines are recalcitrant to regeneration. Requirements for sterile conditions for plant regeneration are another problem of Agrobacterium-mediated transformation. Development of genotype-independent gene transformation method is of great interest in many plants. Some tissue culture-independent Agrobacterium-mediated gene transformation methods are reported in individual plants and crops. Generally, these methods are called in planta gene transformation. In planta transformation methods are free from somaclonal variation and easier, quicker, and simpler than tissue culture-based transformation methods. Vacuum infiltration, injection of Agrobacterium culture to plant tissues, pollen-tube pathway, floral dip and floral spray are the main methods of in planta transformation. Each of these methods has its own advantages and disadvantages. Simplicity and reliability are the primary reasons for the popularity of the in planta methods. These methods are much quicker than regular tissue culture-based Agrobacterium-mediated gene transformation and success can be achieved by non-experts. In the present review, we highlight all methods of in planta transformation comparing them with regular tissue culture-based Agrobacterium-mediated transformation methods and then recently successful transformations using these methods are presented.


Author(s):  
Ni Putu Ayu Erninda Oktaviani Suputri ◽  
Rindang Dwiyani ◽  
Ida Ayu Putri Darmawanti ◽  
Bambang Sugiharto

The SoSPS1 gene of sugar cane plants previously subjected to Agrobacterium tumefacienmediated cloning was to be transferred to citrus plants to increase metabolism of sucrose in plant. The T-DNA harbored the SoSPS1 gene under the control of the CaMV 35S promoter from the cauliflower mosaic virus and contained the NPTII gene (kanamycin resistance gene) as a selectable marker for transformant selection. Generally, gene transformation in plants is carried out by tissue culture. However, tissue culture has several disadvantages such as its being time-consuming, its sometimes resulting in somatic mutations and somaclonal variations, and the requirement of sterile conditions in the procedure of gene transfer. In planta transformation is a useful system for those plants that lack tissue culture and regeneration system. The main function of in planta transformation is to recover the advantages of tissue culture as an efficient, quick method, including its ability to produce a large number of transgenic plants and to accumulate a high concentration of total soluble protein in short time. There are two procedures of in planta transformation for the seeds of citrus plants, namely “prick and coat” and “seed tip-cutting and imbibition”. In the prick and coat method, seeds are pricked on their entire surfaces and smeared with a suspension of Agrobacterium tumefaciens. In the seed tip-cutting and imbibition method, on the other hand, seeds are cut at the tip and soaked in a suspension of Agrobacterium tumefaciens. The leaves derived from seeds treatment were taken as samples for DNA extraction and PCR using primers of the NPTII gene (Forward: 5’-GTCATCTCACCTTCCTCCTGCC-3’; Reverse: 5’-GTCGCTTGGTCGGTCATTTCG-3’). This research found that only the seed tip-cutting and imbibition plants amplified along the 550-bp band, while those of the prick and coat method did not. Additionally, the T-DNA was successfully integrated into the genome of the plants treated with the seed tip-cutting and imbibition method but not with the prick and coat.


Author(s):  
I Putu Wahyu Sanjaya ◽  
Rindang Dwiyani ◽  
I Gede Putu Wirawan ◽  
Bambang Sugiharto

One of the modern plant breedings through genetic engineering is Agrobacterium tumefaciens-mediated transformation. Agrobacterium tumefaciens-mediated transformation can be performed in vitro or in planta. In planta transformation arises from the weaknesses of the in vitro method such as need high hygiene standard, professional tissue culture experts, and more time to prepare explants and somaclonal variation. In planta transformation is a method to transfer the gene to the plant genome without any tissue culture stages. The aims of this research were to know the possibility of the prick and soak in planta method with the target of tomato seeds and to know the most suitable inoculation time for tomato seeds transformation by prick and soak method the transformation is done by pricking the seeds and soaking them in the A. tumefaciens suspension. The treatments in this study were 1 and 2 days inoculation time to test the efficacy of prick and soak in planta transformation method. Tomato seeds were pricked with a needle on the center once, and then soaked in A. tumefaciens strain LB4404 suspension carrying pKYS-SoSPS1 plasmid with Neomycin Phosphotransferase (NPTII) and Saccharum officinarum Sucrose Phosphate synthase (SoSPS1) genes. Visualization of tomato’s DNA samples after PCR showed that 1-day inoculation sample was positively integrated with NPTII gene and negative in the 2 days inoculation treatment.


Sign in / Sign up

Export Citation Format

Share Document