scholarly journals The role of orographic barriers in the origin of extreme rainfalls as exemplified by the front of high Eastern Himalaya and the low northern slope of Carpathians

2018 ◽  
Vol 36 ◽  
pp. 9-17
Author(s):  
Elżbieta Cebulak ◽  
Piotr Gębica ◽  
Danuta Limanówka ◽  
Leszek Starkel ◽  
Robert Pyrc

The paper discusses the role of orographic barriers in generating torrential precipitation in mountainous regions in different climatic zones, the Eastern Himalayas (tropical zone with well-developed monsoon activity) and the northern slope of the Carpathians (temperate zone with transitional climate). Attention has been paid to the different altitudes and courses of the orographic ridges as well as their location relative to the prevailing directions of influx of moist air masses. The cases analysed included torrential rains with monsoon circulation from the S–SW direction at the 2–3 km high edge of the Himalayas, with special consideration to the distance from the margin of the mountains and the exposure of the slopes. They generate frequent flood waves, landslides, debris flows and upbuilding of the alluvial cones in the foreland of the mountain barriers. The impact of the orographic barrier is significantly less marked in the Polish Carpathians. In the western part, the compact edge of the Western Beskids with an altitude of 0.5–1 km and the WSW–NEE course, exposed to moist air masses inflowing from the northern sector, is fragmented eastward into smaller mountain groups, which facilitates the penetration of moist masses of air with occurrence of prolonged precipitation into the mountains. At times, the storm cloud moves along the mountain edge (the margin of the Western Bieszczady Mts.). The marginal scarp of the Foothills has a northern exposure and a height of 150–200 m, and promotes frequent convective precipitation causing local flash floods in small streams. The cases of downpours and high discharges selected for the analysis were those for which there was available a dense network of measuring stations. An insufficient number of stations in constructing precipitation maps based on interpolation would lead to distorting the spatial image. If this were the case, then the role of slope exposure, which has an essential impact on the distribution of precipitation in mountainous regions, would be completely neglected

2018 ◽  
Author(s):  
Stefan Hergarten ◽  
Thomas Kenkmann

Abstract. Worldwide erosion rates seem to have increased strongly since the beginning of the Quaternary, but there is still discussion about the role of glaciation as a potential driver and even whether the increase is real at all or an artefact due to losses in the long-term sedimentary record. In this study we derive estimates of average erosion rates on the time scale of some tens of million years from the terrestrial impact crater inventory. This approach is completely independent from all other methods to infer erosion rates such as river loads, preserved sediments, cosmogenic nuclides and thermochronometry. Our approach yields average erosion rates as a function of present-day topography and climate. The results confirm that topography accounts for the main part of the huge variation of erosion on Earth, but also identifies a significant systematic dependence on climate in contrast to several previous studies. We found a fivefold increase in erosional efficacy from the cold regimes to the tropical zone and that temperate and arid climates are very similar in this context. Combining our results to a worldwide mean erosion rate we found that erosion rates on the time scale of some tens of million years are at least as high as present-day rates and suggest that glaciation has a rather regional effect with a limited impact at the continental scale.


2019 ◽  
Vol 7 (2) ◽  
pp. 459-473 ◽  
Author(s):  
Stefan Hergarten ◽  
Thomas Kenkmann

Abstract. Worldwide erosion rates seem to have increased strongly since the beginning of the Quaternary, but there is still discussion about the role of glaciation as a potential driver and even whether the increase is real at all or an artifact due to losses in the long-term sedimentary record. In this study we derive estimates of average erosion rates on the timescale of some tens of millions of years from the terrestrial impact crater inventory. This approach is completely independent from all other methods to infer erosion rates such as river loads, preserved sediments, cosmogenic nuclides, and thermochronometry. Our approach yields average erosion rates as a function of present-day topography and climate. The results confirm that topography accounts for the main part of the huge variation in erosion on Earth, but also identifies a significant systematic dependence on climate in contrast to several previous studies. We found a 5-fold increase in erosional efficacy from the cold regimes to the tropical zone and that temperate and arid climates are very similar in this context. Combining our results into a worldwide mean erosion rate, we found that erosion rates on the timescale of some tens of millions of years are at least as high as present-day rates and suggest that glaciation has a rather regional effect with a limited impact at the continental scale.


2006 ◽  
Vol 21 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Dan Bikos ◽  
John F. Weaver ◽  
Jeff Braun

Abstract This note provides examples of how geostationary satellite data can be applied to augment other data sources in tracking warm, moist air masses as they move northward from the Gulf of Mexico. These so-called returning air masses are often a key ingredient in bringing about severe weather outbreaks in the central and southeastern United States. The newer NOAA–GOES imagery provides high spatial and temporal resolution. Together, surface observations, upper-air soundings, and high-resolution satellite imagery provide a comprehensive picture of the returning moist air mass.


2019 ◽  
Author(s):  
Marie-Noëlle Bouin ◽  
Cindy Lebeaupin Brossier

Abstract. A medicane, or Mediterranean cyclone with characteristics similar to tropical cyclones, is simulated using a kilometre-scale ocean–atmosphere coupled modelling platform. A first baroclinic phase of the cyclone leads to strong convective precipitation, with high potential vorticity anomalies aloft due to an upper-level trough. The deepening and tropicalization of the cyclone is due first to the crossing of the upper-level jet, then to low-level convergence and uplift of conditionally unstable air masses by cold pools, resulting either from rain evaporation or from advection of continental air masses from North Africa. Backtrajectories show that air–sea heat exchanges warm and moisten the low-level inflow feeding the latent heat release during the mature phase of the medicane. However, the impact of ocean–atmosphere coupling on the cyclone track, intensity and lifecycle is very weak, due to a surface cooling one order of magnitude weaker than for tropical cyclones, even on the area of strong enthalpy fluxes. Isolating the influence of the surface parameters on the surface fluxes at sea during the different phases of the cyclone confirms the impact of the cold pools on the surface processes. The evaporation is controlled mainly by the sea surface temperature and wind, with a significant additional impact of the humidity and temperature at first level during the development phase. The sensible heat flux is influenced mainly by the temperature at first level throughout the whole medicane lifetime. This study shows that the tropical transition, in this case, is dependent on processes widespread in the Mediterranean Basin, like advection of continental air, rain evaporation, and dry air intrusion.


2019 ◽  
Vol 19 (5) ◽  
pp. 3065-3095 ◽  
Author(s):  
Henri Diémoz ◽  
Francesca Barnaba ◽  
Tiziana Magri ◽  
Giordano Pession ◽  
Davide Dionisi ◽  
...  

Abstract. Mountainous regions are often considered pristine environments; however they can be affected by pollutants emitted in more populated and industrialised areas, transported by regional winds. Based on experimental evidence, further supported by modelling tools, here we demonstrate and quantify the impact of air masses transported from the Po Valley, a European atmospheric pollution hotspot, to the northwestern Alps. This is achieved through a detailed investigation of the phenomenology of near-range (a few hundred kilometres), trans-regional transport, exploiting synergies of multi-sensor observations mainly focussed on particulate matter. The explored dataset includes vertically resolved data from atmospheric profiling techniques (automated lidar ceilometers, ALCs), vertically integrated aerosol properties from ground (sun photometer) and space, and in situ measurements (PM10 and PM2.5, relevant chemical analyses, and aerosol size distribution). During the frequent advection episodes from the Po basin, all the physical quantities observed by the instrumental setup are found to significantly increase: the scattering ratio from ALC reaches values >30, aerosol optical depth (AOD) triples, surface PM10 reaches concentrations >100 µg m−3 even in rural areas, and contributions to PM10 by secondary inorganic compounds such as nitrate, ammonium, and sulfate increase up to 28 %, 8 %, and 17 %, respectively. Results also indicate that the aerosol advected from the Po Valley is hygroscopic, smaller in size, and less light-absorbing compared to the aerosol type locally emitted in the northwestern Italian Alps. In this work, the phenomenon is exemplified through detailed analysis and discussion of three case studies, selected for their clarity and relevance within the wider dataset, the latter being fully exploited in a companion paper quantifying the impact of this phenomenology over the long-term (Diémoz et al., 2019). For the three case studies investigated, a high-resolution numerical weather prediction model (COSMO) and a Lagrangian tool (LAGRANTO) are employed to understand the meteorological mechanisms favouring transport and to demonstrate the Po Valley origin of the air masses. In addition, a chemical transport model (FARM) is used to further support the observations and to partition the contributions of local and non-local sources. Results show that the simulations are important to the understanding of the phenomenon under investigation. However, in quantitative terms, modelled PM10 concentrations are 4–5 times lower than the ones retrieved from the ALC and maxima are anticipated in time by 6–7 h. Underestimated concentrations are likely mainly due to deficiencies in the emission inventory and to water uptake of the advected particles not fully reproduced by FARM, while timing mismatches are likely an effect of suboptimal simulation of up-valley and down-valley winds by COSMO. The advected aerosol is shown to remarkably degrade the air quality of the Alpine region, with potential negative effects on human health, climate, and ecosystems, as well as on the touristic development of the investigated area. The findings of the present study could also help design mitigation strategies at the trans-regional scale in the Po basin and suggest an observation-based approach to evaluate the outcome of their implementation.


2020 ◽  
Vol 20 (11) ◽  
pp. 6861-6881 ◽  
Author(s):  
Marie-Noëlle Bouin ◽  
Cindy Lebeaupin Brossier

Abstract. A medicane, or Mediterranean cyclone with characteristics similar to tropical cyclones, is simulated using a kilometre-scale ocean–atmosphere coupled modelling platform. A first phase leads to strong convective precipitation, with high potential vorticity anomalies aloft due to an upper-level trough. Then, the deepening and tropical transition of the cyclone result from a synergy of baroclinic and diabatic processes. Heavy precipitation results from uplift of conditionally unstable air masses due to low-level convergence at sea. This convergence is enhanced by cold pools, generated either by rain evaporation or by advection of continental air masses from northern Africa. Back trajectories show that air–sea heat exchanges moisten the low-level inflow towards the cyclone centre. However, the impact of ocean–atmosphere coupling on the cyclone track, intensity and life cycle is very weak. This is due to a sea-surface cooling 1 order of magnitude weaker than for tropical cyclones, even in the area of strong enthalpy fluxes. Surface currents have no impact. Analysing the surface enthalpy fluxes shows that evaporation is controlled mainly by the sea-surface temperature and wind. Humidity and temperature at the first level play a role during the development phase only. In contrast, the sensible heat transfer depends mainly on the temperature at the first level throughout the medicane lifetime. This study shows that the tropical transition, in this case, is dependent on processes widespread in the Mediterranean Basin, like advection of continental air, rain evaporation and formation of cold pools, and dry-air intrusion.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
M. A. Hernández-Ceballos ◽  
E. Brattich ◽  
G. Cinelli

The present paper describes and characterizes the air mass circulation during the heat-wave events registered during the period 2005–2014 over Spain, paying special attention to the role of the Saharan circulations. Backward trajectories at 500, 1500, and 3000 m in Seville (south), Madrid (centre), and Bilbao (north) during the thirteen heat-wave events identified are analysed. Finally, the impact of the heat-wave events and of each advection pattern on7Be activity concentrations is also analysed. The heat-wave events are characterized roughly by western, southern, and nearby advections, with a higher frequency of the first two types. The analysis shows an increase of African air masses with height, presenting a different spatial impact over Spain, with a decreasing occurrence and a decrease in the simultaneous occurrence percentage from south to north. On average, the7Be activity concentrations during these events show an increase of concentrations in central (21%) and southern (18%) areas and a decrease in northern (13%) Spain. This increase is not associated with Saharan air masses but instead with the arrival of distant westerly air masses.


2018 ◽  
Author(s):  
Henri Diémoz ◽  
Francesca Barnaba ◽  
Tiziana Magri ◽  
Giordano Pession ◽  
Davide Dionisi ◽  
...  

Abstract. Mountainous regions are often considered pristine environments, however they can be affected by pollutants emitted in more populated and industrialised areas, transported by regional winds. Based on experimental evidence, further supported by modelling tools, we demonstrate and quantify here the impact of air masses transported from the Po Valley, a European atmospheric pollution hotspot, to the northwestern Alps. This is achieved through a detailed investigation of the phenomenology of near-range (few hundreds km), trans-regional transport, exploiting synergies of multi-sensor observations mainly focussed on particulate matter. The explored dataset includes vertically-resolved data from atmospheric profiling techniques (Automated LiDAR-Ceilometers, ALC), vertically-integrated aerosol properties from ground (sun photometer) and space, and in situ measurements (PM10 and PM2.5, relevant chemical analyses, and aerosol size distribution). During the frequent advection episodes from the Po basin, all the physical quantities observed by the instrumental setup are found to significantly increase: the scattering ratio from ALC reaches values > 30, AOD triplicates, surface PM10 reaches concentrations > 100 µg/m3 even in rural areas, secondary inorganic compounds such as nitrate, ammonium and sulfate increase up to 28 %, 8 % and 17 % of the total PM10 mass, respectively. Results also indicate that the advected aerosol is smaller in size and less light-absorbing compared to the aerosol type locally-emitted in the northwestern Italian Alps, and hygroscopic. In this work, the phenomenon is exemplified through detailed analysis and discussion of three case studies, selected for their clarity and relevance within the wider dataset, the latter being fully exploited in a companion paper quantifying the impact of this phenomenology over the long-term (Diémoz et al., 2018). For the three case studies investigated, a high-resolution numerical weather prediction model (COSMO) and a lagrangian tool (LAGRANTO) are employed to understand the meteorological mechanisms favouring the transport and to demonstrate the Po Valley origin of the air masses. In addition, a chemical transport model (FARM) is used to further support the observations and to partition the contributions of local and non-local sources. Results show that the simulations are not able to adequately reproduce the measurements (with modelled PM10 concentrations 4–5 times lower than the ones retrieved from the ALC, and maxima anticipated by 6–7 hours), likely owing to deficiencies in the emission inventory and particle water uptake not fully taken into account. The advected aerosol is shown to remarkably degrade the air quality of the Alpine region, with potential negative effects on human health, climate and ecosystems, as well as on the touristic development of the investigated area. The findings of the present study could also help design mitigation strategies at the trans–regional scale in the Po basin, and suggest an observations-based approach to evaluate the outcome of their implementation.


2013 ◽  
Vol 44 (5) ◽  
pp. 311-319 ◽  
Author(s):  
Marco Brambilla ◽  
David A. Butz

Two studies examined the impact of macrolevel symbolic threat on intergroup attitudes. In Study 1 (N = 71), participants exposed to a macrosymbolic threat (vs. nonsymbolic threat and neutral topic) reported less support toward social policies concerning gay men, an outgroup whose stereotypes implies a threat to values, but not toward welfare recipients, a social group whose stereotypes do not imply a threat to values. Study 2 (N = 78) showed that, whereas macrolevel symbolic threat led to less favorable attitudes toward gay men, macroeconomic threat led to less favorable attitudes toward Asians, an outgroup whose stereotypes imply an economic threat. These findings are discussed in terms of their implications for understanding the role of a general climate of threat in shaping intergroup attitudes.


Sign in / Sign up

Export Citation Format

Share Document