scholarly journals Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps

2009 ◽  
Vol 84 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Kazuhiko Sakai ◽  
Shuhei Nasuda ◽  
Kazuhiro Sato ◽  
Takashi R. Endo
Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Shin Taketa ◽  
Masayuki Choda ◽  
Ryoko Ohashi ◽  
Masahiko Ichii ◽  
Kazuyoshi Takeda

Addition of the long arm of barley chromosome 1H (1HL) to wheat causes severe meiotic abnormalities and complete sterility of the plants. To map the barley gene responsible for the 1H-induced sterility of wheat, a series of addition lines of translocated 1H chromosomes were developed from the crosses between the wheat 'Shinchunaga' and five reciprocal translocation lines derived from the barley line St.13559. Examination of the seed fertility of the addition lines revealed that the sterility gene is located in the interstitial 25% region of the 1HL arm. The genetic location of the sterility gene was also estimated by physically mapping sequence-tagged site (STS) markers and simple-sequence repeat (SSR) markers with known map locations. The sterility gene is designated Shw (sterility in hybrids with wheat). Comparison of the present physical map of 1HL with two previously published genetic maps revealed a paucity of markers in the proximal 30% region and non-random distribution of SSR markers. Two inconsistencies in marker order were found between the present physical map and the consensus genetic map of group 1 chromosomes of Triticeae. On the basis of the effects on meiosis and chromosomal location, the relationship of the present sterility gene with other fertility-related genes of Triticeae is discussed.Key words: Hordeum vulgare, molecular markers, sterility, translocation, wheat–barley chromosome addition line.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 548-554 ◽  
Author(s):  
R. S. Kota ◽  
K. S. Gill ◽  
B. S. Gill ◽  
T. R. Endo

We have constructed a cytogenetically based physical map of chromosome 1B in common wheat by utilizing a total of 18 homozygous deletion stocks. It was possible to divide chromosome 1B into 17 subregions. Nineteen genetic markers are physically mapped to nine subregions of chromosome 1B. Comparison of the cytological map of chromosome 1B with an RFLP-based genetic linkage map of Triticum tauschii revealed that the linear order of the genetic markers was maintained between chromosome 1B of hexaploid wheat and 1D of T. tauschii. Striking differences were observed between the physical and genetic maps in relation to the relative distances between the genetic markers. The genetic markers clustered in the middle of the genetic map were physically located in the distal regions of both arms of chromosome 1B. It is unclear whether the increased recombination in the distal regions of chromosome 1B is due to specific regions of increased recombination or a more broadly distributed increase in recombination in the distal regions of Triticeae chromosomes.Key words: common wheat, chromosome 1B, homozygous deletion lines, physical map, RFLP markers.


2011 ◽  
Vol 86 (4) ◽  
pp. 231-248 ◽  
Author(s):  
Giri Prasad Joshi ◽  
Shuhei Nasuda ◽  
Takashi R. Endo

2007 ◽  
Vol 82 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Taizo Ashida ◽  
Shuhei Nasuda ◽  
Kazuhiro Sato ◽  
Takashi R. Endo

1992 ◽  
Vol 84-84 (3-4) ◽  
pp. 339-344 ◽  
Author(s):  
M. L. Wang ◽  
M. D. Atkinson ◽  
C. N. Chinoy ◽  
K. M. Devos ◽  
M. D. Gale

Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
Marco Biagetti ◽  
Francesca Vitellozzi ◽  
Carla Ceoloni

Fluorescence in situ hybridization (FISH) with multiple probes, consisting of highly repeated DNA sequences (pSc119.2 and pAs1) and of a low-copy, 3BS-specific RFLP sequence (PSR907), enabled determination of the physical position of the wheat-alien breakpoints (BPs) along the 3BS and 3DS arms of common wheat recombinant lines. These lines harbour 3SlS Aegilops longissima segments containing the powdery mildew resistance gene Pm13. In all 3B recombinants, the wheat-Aegilops longissima physical BPs lie within the interval separating the two most distal of the three pSc119.2 3BS sites. In all such recombinants a telomeric segment, containing the most distal of the pSc119.2 3BS sites, was in fact replaced by a homoeologous Ae. longissima segment, marked by characteristic pSc119.2 hybridization sites. Employment of the PSR907 RFLP probe as a FISH marker allowed to resolve further the critical region in the various 3B recombinant lines. Three of them, like the control common wheat, exhibited between the two most distal pSc119.2 sites a single PSR907 FISH site, which was missing in a fourth recombinant line. The amount of alien chromatin can thus be estimated to represent around 20% of the recombinant arm in the three former lines and a maximum of 27% in the latter. A similar physical length was calculated for the alien segment contained in three 3D recombinants, all characterized by the presence of the Ae. longissima pSc119.2 sites distal to the nearly telomeric pAs1 sites of normal 3DS. Comparison between the FISH-based maps and previously developed RFLP maps of the 3BS-3SlS and 3DS-3SlS arms revealed substantial differences between physical and genetic map positions of the wheat-alien BPs and of molecular markers associated with the critical chromosomal portions.Key words: wheat-alien recombinants, chromosome engineering, fluorescence in situ hybridization, highly repeated and low-copy DNA probes, physical versus genetic maps.


2011 ◽  
Vol 157 (3) ◽  
pp. 1555-1567 ◽  
Author(s):  
Jianwei Tang ◽  
Kiyoshi Ohyama ◽  
Kanako Kawaura ◽  
Hiromi Hashinokuchi ◽  
Yoko Kamiya ◽  
...  

2011 ◽  
Vol 80 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Mikiko Yanaka ◽  
Kanenori Takata ◽  
Tatsuya M. Ikeda ◽  
Naoyuki Ishikawa

Sign in / Sign up

Export Citation Format

Share Document