scholarly journals Um teste de ajuste com foco no valor em risco condicionado

2008 ◽  
Vol 6 (2) ◽  
pp. 139
Author(s):  
José Santiago Fajardo Barbachan ◽  
Aquiles Rocha de Farias ◽  
José Renato Haas Ornelas

To verify whether an empirical distribution has a specific theoretical distribution, several tests have been used like the Kolmogorov-Smirnov and the Kuiper tests. These tests try to analyze if all parts of the empirical distribution has a specific theoretical shape. But, in a Risk Management framework, the focus of analysis should be on the tails of the distributions, since we are interested on the extreme returns of financial assets. This paper proposes a new goodness-of-fit hypothesis test with focus on the tails of the distribution. The new test is based on the Conditional Value at Risk measure. Then we use Monte Carlo Simulations to assess the power of the new test with different sample sizes, and then compare with the Crnkovic and Drachman, Kolmogorov-Smirnov and the Kuiper tests. Results showed that the new distance has a better performance than the other distances on small samples. We also performed hypothesis tests using financial data. We have tested the hypothesis that the empirical distribution has a Normal, Scaled Student-t, Generalized Hyperbolic, Normal Inverse Gaussian and Hyperbolic distributions, based on the new distance proposed on this paper.

Author(s):  
Peter Tsyarmasto ◽  
Stan Uryasev

This paper considers several well-known Support Vector Machine (SVM) algorithms for classification. We suggested a general risk management framework for describing considered SVMs. We introduced a loss function and expressed each SVM with a risk measure, such as Expected Value, Conditional Value-at-Risk, Supremum. We tested SVM algorithms on five classification data sets. The computational experiments were performed with Portfolio Safeguard (PSG). Risk functions, used in our framework, were precoded in PSG, which allowed for optimization of SVMs with several lines of code.


2021 ◽  
pp. 1-29
Author(s):  
Yanhong Chen

ABSTRACT In this paper, we study the optimal reinsurance contracts that minimize the convex combination of the Conditional Value-at-Risk (CVaR) of the insurer’s loss and the reinsurer’s loss over the class of ceded loss functions such that the retained loss function is increasing and the ceded loss function satisfies Vajda condition. Among a general class of reinsurance premium principles that satisfy the properties of risk loading and convex order preserving, the optimal solutions are obtained. Our results show that the optimal ceded loss functions are in the form of five interconnected segments for general reinsurance premium principles, and they can be further simplified to four interconnected segments if more properties are added to reinsurance premium principles. Finally, we derive optimal parameters for the expected value premium principle and give a numerical study to analyze the impact of the weighting factor on the optimal reinsurance.


2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Mark Levene

A bootstrap-based hypothesis test of the goodness-of-fit for the marginal distribution of a time series is presented. Two metrics, the empirical survival Jensen–Shannon divergence (ESJS) and the Kolmogorov–Smirnov two-sample test statistic (KS2), are compared on four data sets—three stablecoin time series and a Bitcoin time series. We demonstrate that, after applying first-order differencing, all the data sets fit heavy-tailed α-stable distributions with 1<α<2 at the 95% confidence level. Moreover, ESJS is more powerful than KS2 on these data sets, since the widths of the derived confidence intervals for KS2 are, proportionately, much larger than those of ESJS.


2021 ◽  
Vol 14 (5) ◽  
pp. 201
Author(s):  
Yuan Hu ◽  
W. Brent Lindquist ◽  
Svetlozar T. Rachev

This paper investigates performance attribution measures as a basis for constraining portfolio optimization. We employ optimizations that minimize conditional value-at-risk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the performance attributes are established relative to two benchmarks, equi-weighted and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio, Sortino–Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds. The results also suggest a positive role in price and risk-measure performance for the imposition of constraints on AA and SE.


1982 ◽  
Vol 19 (A) ◽  
pp. 359-365 ◽  
Author(s):  
David Pollard

The theory of weak convergence has developed into an extensive and useful, but technical, subject. One of its most important applications is in the study of empirical distribution functions: the explication of the asymptotic behavior of the Kolmogorov goodness-of-fit statistic is one of its greatest successes. In this article a simple method for understanding this aspect of the subject is sketched. The starting point is Doob's heuristic approach to the Kolmogorov-Smirnov theorems, and the rigorous justification of that approach offered by Donsker. The ideas can be carried over to other applications of weak convergence theory.


2021 ◽  
Author(s):  
Xuecheng Yin ◽  
Esra Buyuktahtakin

Existing compartmental-logistics models in epidemics control are limited in terms of optimizing the allocation of vaccines and treatment resources under a risk-averse objective. In this paper, we present a data-driven, mean-risk, multi-stage, stochastic epidemics-vaccination-logistics model that evaluates various disease growth scenarios under the Conditional Value-at-Risk (CVaR) risk measure to optimize the distribution of treatment centers, resources, and vaccines, while minimizing the total expected number of infections, deaths, and close contacts of infected people under a limited budget. We integrate a new ring vaccination compartment into a Susceptible-Infected-Treated-Recovered-Funeral-Burial epidemics-logistics model. Our formulation involves uncertainty both in the vaccine supply and the disease transmission rate. Here, we also consider the risk of experiencing scenarios that lead to adverse outcomes in terms of the number of infected and dead people due to the epidemic. Combining the risk-neutral objective with a risk measure allows for a trade-off between the weighted expected impact of the outbreak and the expected risks associated with experiencing extremely disastrous scenarios. We incorporate human mobility into the model and develop a new method to estimate the migration rate between each region when data on migration rates is not available. We apply our multi-stage stochastic mixed-integer programming model to the case of controlling the 2018-2020 Ebola Virus Disease (EVD) in the Democratic Republic of the Congo (DRC) using real data. Our results show that increasing the risk-aversion by emphasizing potentially disastrous outbreak scenarios reduces the expected risk related to adverse scenarios at the price of the increased expected number of infections and deaths over all possible scenarios. We also find that isolating and treating infected individuals are the most efficient ways to slow the transmission of the disease, while vaccination is supplementary to primary interventions on reducing the number of infections. Furthermore, our analysis indicates that vaccine acceptance rates affect the optimal vaccine allocation only at the initial stages of the vaccine rollout under a tight vaccine supply.


2012 ◽  
Vol 3 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Suresh Andrew Sethi ◽  
Mike Dalton

Abstract Traditional measures that quantify variation in natural resource systems include both upside and downside deviations as contributing to variability, such as standard deviation or the coefficient of variation. Here we introduce three risk measures from investment theory, which quantify variability in natural resource systems by analyzing either upside or downside outcomes and typical or extreme outcomes separately: semideviation, conditional value-at-risk, and probability of ruin. Risk measures can be custom tailored to frame variability as a performance measure in terms directly meaningful to specific management objectives, such as presenting risk as harvest expected in an extreme bad year, or by characterizing risk as the probability of fishery escapement falling below a prescribed threshold. In this paper, we present formulae, empirical examples from commercial fisheries, and R code to calculate three risk measures. In addition, we evaluated risk measure performance with simulated data, and we found that risk measures can provide unbiased estimates at small sample sizes. By decomposing complex variability into quantitative metrics, we envision risk measures to be useful across a range of wildlife management scenarios, including policy decision analyses, comparative analyses across systems, and tracking the state of natural resource systems through time.


2019 ◽  
Vol 12 (3) ◽  
pp. 107 ◽  
Author(s):  
Golodnikov ◽  
Kuzmenko ◽  
Uryasev

A popular risk measure, conditional value-at-risk (CVaR), is called expected shortfall (ES) in financial applications. The research presented involved developing algorithms for the implementation of linear regression for estimating CVaR as a function of some factors. Such regression is called CVaR (superquantile) regression. The main statement of this paper is: CVaR linear regression can be reduced to minimizing the Rockafellar error function with linear programming. The theoretical basis for the analysis is established with the quadrangle theory of risk functions. We derived relationships between elements of CVaR quadrangle and mixed-quantile quadrangle for discrete distributions with equally probable atoms. The deviation in the CVaR quadrangle is an integral. We present two equivalent variants of discretization of this integral, which resulted in two sets of parameters for the mixed-quantile quadrangle. For the first set of parameters, the minimization of error from the CVaR quadrangle is equivalent to the minimization of the Rockafellar error from the mixed-quantile quadrangle. Alternatively, a two-stage procedure based on the decomposition theorem can be used for CVaR linear regression with both sets of parameters. This procedure is valid because the deviation in the mixed-quantile quadrangle (called mixed CVaR deviation) coincides with the deviation in the CVaR quadrangle for both sets of parameters. We illustrated theoretical results with a case study demonstrating the numerical efficiency of the suggested approach. The case study codes, data, and results are posted on the website. The case study was done with the Portfolio Safeguard (PSG) optimization package, which has precoded risk, deviation, and error functions for the considered quadrangles.


2015 ◽  
Vol 4 (4) ◽  
pp. 188
Author(s):  
HERLINA HIDAYATI ◽  
KOMANG DHARMAWAN ◽  
I WAYAN SUMARJAYA

Copula is already widely used in financial assets, especially in risk management. It is due to the ability of copula, to capture the nonlinear dependence structure on multivariate assets. In addition, using copula function doesn’t require the assumption of normal distribution. There fore it is suitable to be applied to financial data. To manage a risk the necessary measurement tools can help mitigate the risks. One measure that can be used to measure risk is Value at Risk (VaR). Although VaR is very popular, it has several weaknesses. To overcome the weakness in VaR, an alternative risk measure called CVaR can be used. The porpose of this study is to estimate CVaR using Gaussian copula. The data we used are the closing price of Facebook and Twitter stocks. The results from the calculation using 90%  confidence level showed that the risk that may be experienced is at 4,7%, for 95% confidence level it is at 6,1%, and for 99% confidence level it is at 10,6%.


2019 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
NI WAYAN UCHI YUSHI ARI SUDINA ◽  
KOMANG DHARMAWAN ◽  
I WAYAN SUMARJAYA

Conditional value at risk (CVaR) is widely used in risk measure that takes into account losses exceeding the value at risk level. The aim of this research is to compare the performance of the EVT-GJR-vine copula method and EVT-GARCH-vine copula method in estimating CVaR of the portfolio using backtesting. Based on the backtesting results, it was found that the EVT-GJR-vine copula method have better performance when compared to the EVT-GARCH-vine copula method in estimating the CVaR value of the portfolio. This can be seen from the statistical values ??, and  of EVT-GJR-vine copula method which is generally smaller than the statistical values , and of the EVT-GARCH-vine copula method.


Sign in / Sign up

Export Citation Format

Share Document