Study on the Sterilization Effect of Ozone Technology on Escherichia coli in the Drainage Water of Opencast Mine

2021 ◽  
Vol 11 (06) ◽  
pp. 1083-1088
Author(s):  
宏堂 李
2010 ◽  
Vol 90 (3) ◽  
pp. 495-505 ◽  
Author(s):  
A C VanderZaag ◽  
K J Campbell ◽  
R C Jamieson ◽  
A C Sinclair ◽  
L G Hynes

Animal agriculture and the use of manure as a soil amendment can lead to enteric pathogens entering water used for drinking, irrigation, and recreation. The presence of Escherichia coli in water is commonly used as an indicator of recent fecal contamination; however, a few recent studies suggest some E. coli populations are able to survive for extended time periods in agricultural soils. This important finding needs to be further assessed with field-scale studies. To this end, we conducted a 1-yr study within a 9.6-ha field that had received fertilizer and semi-solid dairy cattle manure annually for the past decade. Escherichia coli concentrations were monitored throughout the year (before and after manure application) in the effluent from tile drains (at approximately 80 cm depth) and in 5- to 8-m-deep groundwater wells. Escherichia coli was detected in both groundwater and tile drain effluent at concentrations exceeding irrigation and recreational water-quality guidelines. Within two of the monitoring wells, concentrations of E. coli, and frequency of detections, were greatest several months after the manure application. In two monitoring wells and one tile drain the frequency of E. coli detections was higher before manure was applied than after. This suggests the presence and abundance of E. coli was not strongly related to the timing of manure application. A laboratory study using naladixic acid resistant E. coli showed the bacteria could survive at least two times longer in soil samples collected from the study field than in soil from the adjacent riparian area, which had not received manure applications. Together, field and lab results suggest that a consistent source of E. coli exists within the field, which may include “naturalized” strains of E. coli. Further studies are required to determine the specific source of E. coli detected in tile drainage water and shallow groundwater. If the E. coli recovered in subsurface water is primarily mobilized from naturalized populations residing within the soil profile, this indicator organism would have little value as an indicator of recent fecal contamination. Key words: Bacterial survival, naturalized Escherichia coli, groundwater, tile drainage


2013 ◽  
Vol 807-809 ◽  
pp. 1283-1289
Author(s):  
Lei Wang ◽  
Yu Jiao Sun ◽  
Xiao Hui Zhao ◽  
Hui Chun Zhang

Ultraviolet light emitting diodes(UV-LEDs)presenting the advantages of high efficiency,small size,energy saving and without mercury,are gradually replacing mercury lamps in disinfection systems.This study focused 280nm wavelength of UV-LEDs,the Escherichia coli was served as objective in wastewater,the inactivation efficiency and photoreactivation percentage were examined compared with traditional mercury lamps.A series of UV-LEDs dose caused different inactivationefficiency and photoreactivation percentage of E.coli.When UV dose was 1.8 mJ/cm2, inactivation efficiency reached 2.7-lg,then under a 40w sunlight lamp irradiation,the photoreactivation percentage was up to 2.7%;at 3.6 mJ/cm2, inactivation efficiency reached 3-lg,photoreactivation percentage was up to 0.98%.In advanced wastewater treatment,a threshold dose 3.6 mJ/cm2 is suggested of 280nm UV-LEDS.UV dose higher than 3.6 mJ/cm2 can achieve the depth of sterilization effect,that reaches the effect of mercury lamp 40mJ/cm2.The results indicate great advantages of UV-LEDs compared with mercury lamps.


2002 ◽  
Vol 18 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Vinten A.J.A.* ◽  
D.R. Lewis ◽  
D.R. Fenlon ◽  
K.A. Leach ◽  
R. Howard ◽  
...  

2007 ◽  
Vol 182 (1-4) ◽  
pp. 3-12 ◽  
Author(s):  
A. Thiagarajan ◽  
R. Gordon ◽  
A. Madani ◽  
G. W. Stratton

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document