Calculation of “Two Zones” Height by Empirical Formula—Shallow 811 Working Face and Shallow 814 Working Face in Bayi Mining Area of Xinhu Coal Mine

2021 ◽  
Vol 11 (12) ◽  
pp. 1662-1672
Author(s):  
傲 冷

2021 ◽  
Author(s):  
shuang wang ◽  
Yongcun GUO ◽  
Deyong LI

Abstract This study provides a new permanent magnetic eddy current drive system to solve the ener-gy-saving drive problem of the scraper conveyor working under bad conditions, including overload startup, severe abrasion and pollution. Considering the practical conveying conditions of the scraper chain on a fully mechanised coal mining face, this study creates a mathematical model for the new permanent magnetic eddy current drive system of the scraper conveyor based on its characteristics and indicates the motion characteristics of the scraper chain driven by two wheels. This study verifies the model accuracy with a pre-startup technology depending on the scraper conveyor on the No. 12318 working face of the 8th coal mine in the West No. 1 mining area of the Pansan Coal Mine of the Huainan Mining Group. According to the results, the motion acceleration of the scraper chain based on the new permanent magnetic eddy current drive is lower than that of the scraper chain with a hydraulic coupler under the same running condition and load during startup and acceleration and declines by approximately 14.7%. Consequently, this can decline the startup impact due to the serious abrasion and frequent overload of the scraper chain working under bad conditions.



2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Wenyue Qi ◽  
Jixiong Zhang ◽  
Nan Zhou ◽  
Zhongya Wu ◽  
Jun Zhang

Deep coal mining is unavoidable, and the complex mining environments and the increasing dangers associated with ultrahigh energy accumulation and release from mining disturbances renders it extremely difficult to maintain a safe and stable stope. Solid backfilling technology directly uses coal gangue and other solid wastes in the mining area to fill the gob after mining. Support from the backfill body can inhibit the movement of overlying rock strata and significantly alleviate the influence of mining. In this study, the correlations between the deformation of gangue filling material and the characteristics of energy dissipation were examined under lateral uniaxial compression. The strain energy density distributions of backfilling and caving mining methods were simulated using numerical modeling. The results showed that the strain energy density distribution of backfilling mining was less concentrated, and its peak value was lower than that of caving mining by 51.0%, indicating that backfilling could effectively reduce the amount of energy released from mining rocks. The dense backfill mining area of the No. 9301 face in Tangkou Coal Mine was used as a case study. Measures for controlling the backfill body compaction for reducing the amount of energy released from mining rocks were proposed. These measures include optimizing the support structure and filling material formula, controlling the preroof subsidence, and ensuring an appropriate number of tamping strokes. The monitoring results of the backfilling quality, surface subsidence, and microseismic energy of No. 9301 working face in Tangkou Coal Mine showed that when the backfill body filling ratio control value was 82.28%, the total number of microseisms and the amount of energy released from the mining working face were significantly lower compared to those of the caving method. This study demonstrated that the backfill body could effectively reduce the amount of energy released from mining rocks, thereby realizing management of mine earthquake and sustainable deep coal mining.



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yanjun He ◽  
Jianhua Li

In this study, the 31113 fully mechanised working face in the Lijiahao Coal Mine was selected as the project background. The failure characteristics and optimum spacing of a double-withdrawal-channel surrounding rock were extensively investigated through field measurements, theoretical analysis, and numerical simulations. The following results were obtained. The loading influence range of the working face was fixed. Under the influence of mining, the stress distribution variation in the double-withdrawal channels with spacing and the influence of stress distribution on the surrounding rock stability of the withdrawal channels were determined. The optimum distance between the double-withdrawal channels to achieve the stability of the surrounding rock was at least 25 m, and engineering measures are required to limit the mining height in the final mining stage. The rationality of the main and auxiliary withdrawal channel spacing of 25 m and measures to limit the mining height in the final stage were demonstrated. The findings of this study provide a valuable reference for constructing the layout of withdrawal channels in the adjacent working faces of the same mining area.



Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Huicong Xu ◽  
Xingping Lai ◽  
Shuai Zhang ◽  
Yun Zhang ◽  
Pengfei Shan ◽  
...  

Abstract Water-conducting fractured zone is the direct inducement of water inrush, water losing, and environmental deterioration in coal mines. How to predict the height of water-conducting fractured zone economically and accurately has always been the research difficulty of water-preserved mining. The paper selects the Meihuajing coal mine in Ningdong mining area as the engineering background. Firstly, transform the distribution law of the water-conducting fractured zone into a deterioration mechanism of coal-rock strength under the action of water-rock. Through laboratory tests, the water-rock coupling degradation law of rock mass under uniaxial action is revealed, and an intelligent statistical model of damage rate response under different water content is proposed. Secondly, based on the cross-scale elastic modulus calibration principle and the rate response intelligent statistical model proposed above, the borehole elastic modulus instrument is used to quantitatively characterize the strength characteristics of elastic modulus rate response law and field lithological parameters. Finally, based on the 18 samples of the water-conducting fractured zone, a height prediction model of a water-conducting fractured zone based on the measured value of elastic modulus is proposed by using the method of PSO-SVR. Taking R2 and RMSE as evaluation indexes, the error comparison between PSO-SVR and the empirical formula is carried out. Research indicates that, compared with the empirical formula, R2 of the PSO-SVR model increased by 18.3% and RMSE decreased by 92.7%. The predicted value of the PSO-SVR is consistent with the measured value, which significantly improves the prediction accuracy of the height of the water-conducting fractured zone. It provides a theoretical basis and technical support for the coordinated development of safe and efficient development of coal and ecological protection in Ningdong mining area.



2021 ◽  
Vol 113 ◽  
pp. 103972
Author(s):  
Chao Zhang ◽  
Gaohan Jin ◽  
Chao Liu ◽  
Shugang Li ◽  
Junhua Xue ◽  
...  


2012 ◽  
Vol 170-173 ◽  
pp. 836-841
Author(s):  
Wei Shao ◽  
Bin Lin

Gu Bei coal mine deep shaft freezing pressure of calcareous clay dynamic monitoring showed that the freezing pressure of the calcareous clay fastest grow in the first 2 weeks after the sidewall concrete pouring , freezing pressure has obvious direction . Analysis showed that the layer of freezing pressure is mainly calcareous clay layer deformation pressure, size and the temperature of well has a positive correlation. Maximum freezing pressure of the deep calcareous clay layer approximate the permanent formation pressure values and the maximum frost heave force determined by the frost heave experiments in indoor closed systems ,the average freezing pressure with depth variation of the exponential function can be used to good description.



2013 ◽  
Vol 634-638 ◽  
pp. 3537-3540
Author(s):  
Xin Xian Zhai ◽  
Xiao Ju Li ◽  
Yan Wei Zhai

Duanwang Coal Mine is located at north of Qinshui coalfield in Shanxi province, China, which gently inclined and thick seams have been mined. Authorized production capacity of the coal mine is 1.8Mt/a. With the increase of mining depth, the mine gas emission quantity increased. Karst collapse columns are very developed in the minefield, and the phenomenon of abnormal gas emission always occurred at the coal face and driving gateway around the collapse columns, then the mine became high gassy one from low gassy mine. Using field measurement and theoretical analysis methods, the following conclusion can be drawn. Karst collapse columns have significant influences on gas emission of the coal face and driving gateway. Here are large amount of free form gas into and around the collapse columns, the collapse columns were disclosure while driving gateway, a large amount of the free gas into collapse column would be instantly released, which caused abnormal gas emission at driving gateway, even leading to gas density exceeding limitation by Coal Mine Safety Regulation of China. However, during mining area of the collapse columns, gas emission quantity at coal face was relatively smaller.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.



Sign in / Sign up

Export Citation Format

Share Document