Monte Carlo Simulation Result of Pulsed Neutron-neutron Logging Method for Offshore Oilfield

2019 ◽  
Vol 41 (06) ◽  
pp. 1-8
Author(s):  
振永 侯
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. D219-D232
Author(s):  
Hu Wang ◽  
Wensheng Wu ◽  
Tianzhi Tang ◽  
Ruigang Wang ◽  
Aizhong Yue ◽  
...  

Formation density is one of the most important parameters in formation evaluation. Radioisotope chemical sources are used widely in conventional gamma-gamma density (GGD) logging. Considering security and environmental risks, there has been growing interest in pulsed neutron generators in place of the radioactive-chemical source in using bulk-density measurements. However, there still is the requirement of high accuracy of the neutron-gamma density (NGD) calculation. Pair production is one of the factors influencing the accuracy of the results, which should be considered. We have adopted a method, based on the difference between the inelastic gamma-ray response of high- and low-energy windows, to reduce the impact of pair production upon calculating the bulk density. A new density estimation algorithm is derived based on the coupled-field theory and gamma-ray attenuation law in NGD logging. We analyze the NGD measurement accuracy with different mineral types, porosity, and pore fluid and determine the influence of the borehole environment on NGD logging. The Monte Carlo simulation results indicate that the improved processing algorithm limits the influence of the mineral type, porosity, or pore fluid. The NGD measurement accuracy is ±0.025 g/cm3 in shale-free formations, which is close to the GGD measurement (±0.015 g/cm3). Our results also show that the borehole environment has a significant impact on NGD measurement. Therefore, it is necessary to take the influence of the borehole parameters into account in NGD measurements. Combined with Monte Carlo simulation cases, we evaluate the application results of the new density estimation algorithm in various model wells.


2007 ◽  
Vol 50 (6) ◽  
pp. 1654-1661 ◽  
Author(s):  
Feng ZHANG ◽  
Jian-Ping XU ◽  
Ling-Mei HU ◽  
Chun-Hong XIU ◽  
Jian-Meng SUN

2011 ◽  
Vol 121-126 ◽  
pp. 750-754
Author(s):  
Yuan Gao ◽  
Zi Li Deng

By the CI (Covariance Intersection) fusion algorithm, based on the ARMA innovation model, the two-sensor CI fusion Kalman estimators are presented for the systems with unknown cross-covariance. It is proved that their estimation accuracies are higher than those of the local Kalman estimators, and are lower than those of the optimal fused Kalman estimators. A Monte-Carlo simulation result shows that the actual accuracy of the presented CI fusion Kalman estimator are close to those of the optimal fused Kalman estimators with known cross-covariance.


2008 ◽  
Vol 575-578 ◽  
pp. 627-632 ◽  
Author(s):  
Shi Xing Zhang ◽  
Shao Kang Guan ◽  
Xin Tian Liu ◽  
Chun Li Mo

A method of Monte Carlo combined with welding experiments was adopted to study the grain size and microstructure in welding heat affected zone of the ferrite stainless steel. Firstly, the kinetic equation of grain growth was established with the experimental data . Then , a simulation procedure based on the kinetic equation was worked out. Agreement between Monte Carlo simulation result and the real experiment results was obtained.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Sign in / Sign up

Export Citation Format

Share Document