Monte Carlo simulation of pulsed neutron experiments on samples of variable mass density

Author(s):  
Joanna Dąbrowska ◽  
Krzysztof Drozdowicz
Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. D219-D232
Author(s):  
Hu Wang ◽  
Wensheng Wu ◽  
Tianzhi Tang ◽  
Ruigang Wang ◽  
Aizhong Yue ◽  
...  

Formation density is one of the most important parameters in formation evaluation. Radioisotope chemical sources are used widely in conventional gamma-gamma density (GGD) logging. Considering security and environmental risks, there has been growing interest in pulsed neutron generators in place of the radioactive-chemical source in using bulk-density measurements. However, there still is the requirement of high accuracy of the neutron-gamma density (NGD) calculation. Pair production is one of the factors influencing the accuracy of the results, which should be considered. We have adopted a method, based on the difference between the inelastic gamma-ray response of high- and low-energy windows, to reduce the impact of pair production upon calculating the bulk density. A new density estimation algorithm is derived based on the coupled-field theory and gamma-ray attenuation law in NGD logging. We analyze the NGD measurement accuracy with different mineral types, porosity, and pore fluid and determine the influence of the borehole environment on NGD logging. The Monte Carlo simulation results indicate that the improved processing algorithm limits the influence of the mineral type, porosity, or pore fluid. The NGD measurement accuracy is ±0.025 g/cm3 in shale-free formations, which is close to the GGD measurement (±0.015 g/cm3). Our results also show that the borehole environment has a significant impact on NGD measurement. Therefore, it is necessary to take the influence of the borehole parameters into account in NGD measurements. Combined with Monte Carlo simulation cases, we evaluate the application results of the new density estimation algorithm in various model wells.


2007 ◽  
Vol 50 (6) ◽  
pp. 1654-1661 ◽  
Author(s):  
Feng ZHANG ◽  
Jian-Ping XU ◽  
Ling-Mei HU ◽  
Chun-Hong XIU ◽  
Jian-Meng SUN

2019 ◽  
Vol 488 (3) ◽  
pp. 4356-4369 ◽  
Author(s):  
Trystyn A M Berg ◽  
Sara L Ellison ◽  
Rubén Sánchez-Ramírez ◽  
Sebastián López ◽  
Valentina D’Odorico ◽  
...  

Abstract Sub-damped Lyman α systems (subDLAs; H i column densities of 19.0 ≤ logN(H i) < 20.3) are rarely included in the cosmic H i census performed at redshifts zabs ≳ 1.5, yet are expected to contribute significantly to the overall H i mass budget of the Universe. In this paper, we present a blindly selected sample of 155 subDLAs found along 100 quasar sightlines (with a redshift path-length ΔX = 475) in the XQ-100 legacy survey to investigate the contribution of subDLAs to the H i mass density of the Universe. The impact of X-Shooter’s spectral resolution on Ly α absorber identification is evaluated, and found to be sufficient for reliably finding absorbers down to a column density of logN(H i) ≥ 18.9. We compared the implications of searching for subDLAs solely using H i absorption versus the use of metal lines to confirm the identification, and found that metal-selection techniques would have missed 75 subDLAs. Using a bootstrap Monte Carlo simulation, we computed the column density distribution function (f(N, X)) and the cosmological H i mass density ($\Omega _{\rm H\,{\small I}}$) of subDLAs and compared with our previous work based on the XQ-100 damped Lyman α systems. We do not find any significant redshift evolution in f(N, X) or $\Omega _{\rm H\,{\small I}}$ for subDLAs. However, subDLAs contribute 10–20 per cent of the total $\Omega _{\rm H\,{\small I}}$ measured at redshifts 2 < z < 5, and thus have a small but significant contribution to the H i budget of the Universe.


Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


Sign in / Sign up

Export Citation Format

Share Document