Zero-Zero-Hopf Bifurcation of a Hyperchaotic Faraday Disk Dynamo

2020 ◽  
Vol 10 (05) ◽  
pp. 518-523
Author(s):  
环宇 余
Keyword(s):  
2018 ◽  
Vol 21 (6) ◽  
pp. 411-419 ◽  
Author(s):  
Conghua Wang ◽  
Fang Yan ◽  
Yuan Zhang ◽  
Haihong Liu ◽  
Linghai Zhang

Aims and Objective: A large number of experimental evidences report that the oscillatory dynamics of p53 would regulate the cell fate decisions. Moreover, multiple time delays are ubiquitous in gene expression which have been demonstrated to lead to important consequences on dynamics of genetic networks. Although delay-driven sustained oscillation in p53-based networks is commonplace, the precise roles of such delays during the processes are not completely known. Method: Herein, an integrated model with five basic components and two time delays for the network is developed. Using such time delays as the bifurcation parameter, the existence of Hopf bifurcation is given by analyzing the relevant characteristic equations. Moreover, the effects of such time delays are studied and the expression levels of the main components of the system are compared when taking different parameters and time delays. Result and Conclusion: The above theoretical results indicated that the transcriptional and translational delays can induce oscillation by undergoing a super-critical Hopf bifurcation. More interestingly, the length of these delays can control the amplitude and period of the oscillation. Furthermore, a certain range of model parameter values is essential for oscillation. Finally, we illustrated the main results in detail through numerical simulations.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6247-6267 ◽  
Author(s):  
Elham Shamsara ◽  
Zahra Afsharnezhad ◽  
Reihaneh Mostolizadeh

Developing accurate mathematical models for host immune response in immunosuppressive diseases such as HIV and HTLV-1 are essential to achieve an optimal drug therapy regime. Since for HTLV-1 specific CTL response typically occurs after a time lag, we consider a discontinuous response function to better describe this lagged response during the early stage of the infectious, thus the system of HTLV-1 model will be a discontinuous system. For analyzing the dynamic of the system we use Filippov theory and find conditions in which the Filippov system undergoes a Hopf bifurcation. The Hopf bifurcation help us to find stable and unstable periodic oscillations and can be used to predict whether the CTL response can return to a steady state condition. Also, Hopf bifurcation in sliding mode is investigated. In this case the solutions will remain in the hyper-surface of discontinuity and as a consequence the disease cannot progress, at least for a long time. Finally we use numerical simulations to demonstrate the results by example.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


2018 ◽  
Vol 855 (2) ◽  
pp. 130 ◽  
Author(s):  
Christian Fendt ◽  
Dennis Gaßmann

Sign in / Sign up

Export Citation Format

Share Document