scholarly journals The stability and Hopf bifurcation of the diffusive Nicholson’s blowflies model in spatially heterogeneous environment

Author(s):  
Dan Huang ◽  
Shanshan Chen
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950144 ◽  
Author(s):  
Zuolin Shen ◽  
Junjie Wei

In this paper, we consider the dynamics of a delayed reaction–diffusion mussel-algae system subject to Neumann boundary conditions. When the delay is zero, we show the existence of positive solutions and the global stability of the boundary equilibrium. When the delay is not zero, we obtain the stability of the positive constant steady state and the existence of Hopf bifurcation by analyzing the distribution of characteristic values. By using the theory of normal form and center manifold reduction for partial functional differential equations, we derive an algorithm that determines the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, some numerical simulations are carried out to support our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150143
Author(s):  
Zunxian Li ◽  
Chengyi Xia

In this paper, we explore the dynamical behaviors of the 1D two-grid coupled cellular neural networks. Assuming the boundary conditions of zero-flux type, the stability of the zero equilibrium is discussed by analyzing the relevant eigenvalue problem with the aid of the decoupling method, and the conditions for the occurrence of Turing instability and Hopf bifurcation at the zero equilibrium are derived. Furthermore, the approximate expressions of the bifurcating periodic solutions are also obtained by using the Hopf bifurcation theorem. Finally, numerical simulations are provided to demonstrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850136 ◽  
Author(s):  
Ben Niu ◽  
Yuxiao Guo ◽  
Yanfei Du

Tumor-immune interaction plays an important role in the tumor treatment. We analyze the stability of steady states in a diffusive tumor-immune model with response and proliferation delay [Formula: see text] of immune system where the immune cell has a probability [Formula: see text] in killing tumor cells. We find increasing time delay [Formula: see text] destabilizes the positive steady state and induces Hopf bifurcations. The criticality of Hopf bifurcation is investigated by deriving normal forms on the center manifold, then the direction of bifurcation and stability of bifurcating periodic solutions are determined. Using a group of parameters to simulate the system, stable periodic solutions are found near the Hopf bifurcation. The effect of killing probability [Formula: see text] on Hopf bifurcation values is also discussed.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032036
Author(s):  
Linlin Su

Abstract This paper qualitatively analyzes the stability of the equilibrium solution of a class of fractional chaotic financial systems and the conditions for the occurrence of Hopf bifurcation, and uses the Adams-Bashford-Melton predictive-correction finite difference method to pass the analysis Bifurcation diagrams, phase diagrams, and time series diagrams are used to simulate the complex evolution behavior of the system.


Sign in / Sign up

Export Citation Format

Share Document