Effect of Electron Donor on Growth and Metabolism of Sulfate Reducing Bacteria

2019 ◽  
Vol 07 (01) ◽  
pp. 64-71
Author(s):  
世阳 陈
2020 ◽  
Vol 384 ◽  
pp. 121392 ◽  
Author(s):  
Olga Lidia Zacarías-Estrada ◽  
Lourdes Ballinas-Casarrubias ◽  
María Elena Montero-Cabrera ◽  
Rene Loredo-Portales ◽  
Erasmo Orrantia-Borunda ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 4603
Author(s):  
Yuichi Sugai ◽  
Yukihiro Owaki ◽  
Kyuro Sasaki

This paper examined the reservoir souring induced by the sulfate-reducing bacteria (SRB) inhabiting the reservoir brine of an oilfield in Japan. Although the concentration of sulfate of the reservoir brine was lower than that of seawater, which often was injected into oil reservoir and induced the reservoir souring, the SRB inhabiting the reservoir brine generated hydrogen sulfide (H2S) by using sulfate and an electron donor in the reservoir brine. This paper therefore developed a numerical simulator predicting the reservoir souring in the reservoir into which the reservoir brine was injected. The results of the simulation suggested that severe reservoir souring was not induced by the brine injection; however, the SRB grew and generated H2S around the injection well where temperature was decreased by injected brine whose temperature was lower than that of formation water. In particular, H2S was actively generated in the mixing zone between the injection water and formation water, which contained a high level of the electron donor. Furthermore, the results of numerical simulation suggested that the reservoir souring could be prevented more surely by sterilizing the SRB in the injection brine, heating up the injection brine to 50 °C, or reducing sulfate in the injection brine.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 187-194 ◽  
Author(s):  
Young-Chae Song ◽  
Byeong-Cheon Piak ◽  
Hang-Sik Shin ◽  
Sung-Jin La

The effects of electron donor and toxic materials on the activity of SRB (sulfate reducing bacteria) were evaluated to ensure the efficient treatment of electroplating wastewater using an anaerobic batch test. The maximum utilization rate of glucose by SRB was slightly slower than that of lactate and acetate, but the affinity of glucose on the SRB was similar to that of the acetate and the lactate. The concentration of carbon source required to reduce 2,000mg/L of sulfate, that is the common concentration of sulfate in the raw electroplating wastewater, was estimated as about 2,200mg COD/L. The efficiency of carbon source for the reduction of sulfate was the highest at around 0.33 of the COD/SO4−2 ratio, but the rate of sulfate reduction was increased according to the increase of COD/SO4−2 ratio ranged from 0.18 to 1.21. Inhibition of copper on the activity of SRB was able to explain using non-competitive inhibition model, and IC50 for copper, that is the concentration causing 50% inhibition of SRB activity, was about 100mg/L of copper. The inhibition of chromium(VI) on the activity of SRB was observed as a mixed inhibition, but the degree of inhibition on the activity of SRB was only about 15% at 130mg/L of the chromium(VI). The inhibitory effect on the SRB caused by 10mg/L of cyanide compound was over 30% of the control, and it was rapidly increased with the cyanide concentration. That could be explained using uncompetitive inhibition model, and IC50 was estimated as about 20mg/L.


1998 ◽  
Vol 64 (11) ◽  
pp. 4607-4609 ◽  
Author(s):  
Jon R. Lloyd ◽  
Ping Yong ◽  
Lynne E. Macaskie

ABSTRACT Worldwide usage of platinum group metals is increasing, prompting new recovery technologies. Resting cells of Desulfovibrio desulfuricans reduced soluble Pd2+ to elemental, cell-bound Pd0 supported by pyruvate, formate, or H2 as the electron donor without biochemical cofactors. Pd reduction was O2 insensitive, opening the way for recycling and recovery of Pd under oxic conditions.


BIOLOVA ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 122-127
Author(s):  
Beny Saputra ◽  
Agus Sutanto ◽  
Mia Cholvistaria ◽  
Suprayitno Suprayitno ◽  
Nala Rahmawati

Abstrak: Bakteri pereduksi sulfat atau Sulfate-reducing bacteria (SRB) adalah jenis bakteri obligat anaerob kemolitrotof memanfaatkan donor electron H2. Kemampuan SRB mereduksi sulfat menjadi sulfida mampu mengendapkan logam toksik meliputi Cd, Cu, dan Zn sebagai logam sulfida. SRB memerlukan substrat organik seperti asam piruvat yang dihasilkan oleh aktivitas anaerob lainnya. Mekanisme SRB dalam melakukan reduksi sulfat, sulfat digunakan sebagai sumber energi sebagai akseptor elektron dan menggunakan sumber karbon (C) sebagai donor elekton dalam metabolisme dan bahan penyusun sel. Pada kondisi anaerob bahan organik akan berperan sebagai donor elektron. Pembentukan senyawa sulfida melalui proses reduksi yang ditandai oleh penambahan elektron dari bahan organik yang menyebabkan turunnya konsentrasi sulfat dan naiknya pH lingkungan. SRB pada kawah air panas nirwana ini hidup secara anaerob pada suhu lingkungan 600C - 1000C dengan pH 7,4 tingkat kekeruhan air cukup keruh dan kandungan air yang mengandung blerang dengan indikator bau seperti telur busuk dan lingkungan sekitar terdiri dari sedimen batu kapur.   Abstract : Sulfate-reducing bacteria (BPS) is a type of chemolithotroph obligate anaerobic bacteria that utilize H2 electron donors. The ability of BPS to reduce sulfate to sulfide is able to precipitate toxic metals including Cd, Cu, and Zn as metal sulfides. BPS requires organic substrates such as pyruvic acid which is produced by other anaerobic activities. The BPS mechanism in reducing sulfate, sulfate is used as an energy source as an electron acceptor and uses a carbon source (C) as an electron donor in metabolism and cell building material. Under anaerobic conditions, organic matter will act as an electron donor. The formation of sulfide compounds through a reduction process is characterized by the addition of electrons from organic matter which causes a decrease in sulfate concentration and an increase in environmental pH. BPS in this nirvana hot spring crater lives anaerobically at an environmental temperature of 600C - 1000C with a pH of 7.4 the level of turbidity of the water is quite cloudy and the water content contains sulfur with an indicator of smell like rotten eggs and the surrounding environment consists of limestone sediments


2011 ◽  
Vol 60 (9) ◽  
pp. 402-410 ◽  
Author(s):  
Kimio Ito ◽  
Satoshi Wakai ◽  
Hirohito Tsurumaru ◽  
Takao Iino ◽  
Koji Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document