scholarly journals Simulation Study on Reservoir Souring Induced by Injection of Reservoir Brine Containing Sulfate-Reducing Bacteria

2020 ◽  
Vol 12 (11) ◽  
pp. 4603
Author(s):  
Yuichi Sugai ◽  
Yukihiro Owaki ◽  
Kyuro Sasaki

This paper examined the reservoir souring induced by the sulfate-reducing bacteria (SRB) inhabiting the reservoir brine of an oilfield in Japan. Although the concentration of sulfate of the reservoir brine was lower than that of seawater, which often was injected into oil reservoir and induced the reservoir souring, the SRB inhabiting the reservoir brine generated hydrogen sulfide (H2S) by using sulfate and an electron donor in the reservoir brine. This paper therefore developed a numerical simulator predicting the reservoir souring in the reservoir into which the reservoir brine was injected. The results of the simulation suggested that severe reservoir souring was not induced by the brine injection; however, the SRB grew and generated H2S around the injection well where temperature was decreased by injected brine whose temperature was lower than that of formation water. In particular, H2S was actively generated in the mixing zone between the injection water and formation water, which contained a high level of the electron donor. Furthermore, the results of numerical simulation suggested that the reservoir souring could be prevented more surely by sterilizing the SRB in the injection brine, heating up the injection brine to 50 °C, or reducing sulfate in the injection brine.

1994 ◽  
Vol 353 ◽  
Author(s):  
S. Fukunaga ◽  
H. Yoshikawa ◽  
K. Fujiki ◽  
H. Asano

AbstractThe active range ofDesulfovibrio desulfuricans. a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels.SRB activity was estimated at 35°C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely.A chart was obtained showing the active range ofDesulfovibrio desulfuricansin terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified.


2020 ◽  
Vol 384 ◽  
pp. 121392 ◽  
Author(s):  
Olga Lidia Zacarías-Estrada ◽  
Lourdes Ballinas-Casarrubias ◽  
María Elena Montero-Cabrera ◽  
Rene Loredo-Portales ◽  
Erasmo Orrantia-Borunda ◽  
...  

2009 ◽  
Vol 64 (3-4) ◽  
pp. 260-266
Author(s):  
Wu Chen ◽  
Fu Xiang ◽  
Jie Fu ◽  
Qiang Wang ◽  
Wenjun Wang ◽  
...  

Microbiologically influenced corrosion (MIC) caused by sulfate-reducing bacteria (SRB) has been investigated in an oilfield injection water system. Strain CW-01 was isolated from an oilfield and strain CW-04 was isolated from biofilm dirt of pipeline walls. The strains were facultative anaerobes, non-motile, Gram-positive, pole flagellum, and spore-forming curved rods. The growth was observed over the temperature range 20-70 °C. Strain CW-01 grew optimally at 37 °C. The pH range for growth was 3.0-11, optimal at pH 6.0. Strain CW-04 grew optimally at 48 °C. The pH range for growth was 3.0-10, optimal at pH 7.2. The strains grew at a very broad range of salt concentrations. Optimal growth was observed with 1.5 g/L NaCl for strain CW-01 and 0.7 g/L NaCl for strain CW-04. The strains showed most similarity in physiological characteristics, except for acetone and saccharose. Analysis of the 16S rDNA sequences allowed strains CW-01 and CW-04 to be classified into the genus Desulfotomaculum. The corrosion speciality of the strains had been comparatively investigated. Especially SRB’s growth curve, bearable oxygen capability, drug fastness and corrosion rate had been analyzed. The results showed that it is difficult to prevent bacterial corrosion caused by these two strains.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 187-194 ◽  
Author(s):  
Young-Chae Song ◽  
Byeong-Cheon Piak ◽  
Hang-Sik Shin ◽  
Sung-Jin La

The effects of electron donor and toxic materials on the activity of SRB (sulfate reducing bacteria) were evaluated to ensure the efficient treatment of electroplating wastewater using an anaerobic batch test. The maximum utilization rate of glucose by SRB was slightly slower than that of lactate and acetate, but the affinity of glucose on the SRB was similar to that of the acetate and the lactate. The concentration of carbon source required to reduce 2,000mg/L of sulfate, that is the common concentration of sulfate in the raw electroplating wastewater, was estimated as about 2,200mg COD/L. The efficiency of carbon source for the reduction of sulfate was the highest at around 0.33 of the COD/SO4−2 ratio, but the rate of sulfate reduction was increased according to the increase of COD/SO4−2 ratio ranged from 0.18 to 1.21. Inhibition of copper on the activity of SRB was able to explain using non-competitive inhibition model, and IC50 for copper, that is the concentration causing 50% inhibition of SRB activity, was about 100mg/L of copper. The inhibition of chromium(VI) on the activity of SRB was observed as a mixed inhibition, but the degree of inhibition on the activity of SRB was only about 15% at 130mg/L of the chromium(VI). The inhibitory effect on the SRB caused by 10mg/L of cyanide compound was over 30% of the control, and it was rapidly increased with the cyanide concentration. That could be explained using uncompetitive inhibition model, and IC50 was estimated as about 20mg/L.


Sign in / Sign up

Export Citation Format

Share Document