scholarly journals CHANGES IN PARAMETERIZATIONS OF REGIONAL CLIMATE MODEL REGCM4.4.5: THE ROLE OF LAND COVER ON REGIONAL CLIMATE OVER MEDITERRANEAN

2017 ◽  
Vol 50 (2) ◽  
pp. 1062
Author(s):  
K. Velikou ◽  
K. Tolika ◽  
Ch. Anagnostopoulou

A parameter that affects significantly the local, regional and global climate system is land cover and the changes that may occur to it. During winter season, heavy precipitation assists vegetation growth of Mediterranean forests and woodlands, whereas during summer, absence of precipitation and severe heat waves result to arid and semiarid vegetation. For that reason, it was quite interesting to track the changes that may occur in the climate of the Mediterranean region due to land cover/land use changes on regional climate over the Mediterranean region. The main objective of the study is the assessment of the impacts of land cover/land use changes on regional climate over the Mediterranean region. The examined regional climate model used in the study is RegCM4.4.5. Its spatial resolution is 25x25km and different simulations were performed with changes in land cover/land use for the time period 1981-1990. The different simulated data were compared in order to examine the modifications that occur from land cover/land use changes in evapotranspiration and surface albedo to direct and diffuse radiation in the domain of study.

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Pablo O. Canziani ◽  
Gerardo Carbajal Benitez

Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangzheng Deng ◽  
Chunhong Zhao ◽  
Haiming Yan

There have been tremendous changes in the global land use pattern in the past 50 years, which has directly or indirectly exerted significant influence on the global climate change. Quantitative analysis for the impacts of land use and land cover changes (LUCC) on surface climate is one of the core scientific issues to quantitatively analyze the impacts of LUCC on the climate so as to scientifically understand the influence of human activities on the climate change. This paper comprehensively analyzed the primary scientific issues about the impacts of LUCC on the regional climate and reviewed the progress in relevant researches. Firstly, it introduced the influence mechanism of LUCC on the regional climate and reviewed the progress in the researches on the biogeophysical process and biogeochemical process. Then the model simulation of effects of LUCC on the regional climate was introduced, and the development from the global climate model to the regional climate model and the integration of the improved land surface model and the regional climate model were reviewed in detail. Finally, this paper discussed the application of the regional climate models in the development and management of agricultural land and urban land.


2019 ◽  
Vol 19 (8) ◽  
pp. 2621-2635 ◽  
Author(s):  
George Zittis ◽  
Panos Hadjinicolaou ◽  
Marina Klangidou ◽  
Yiannis Proestos ◽  
Jos Lelieveld

AbstractObservation and model-based studies have identified the Mediterranean region as one of the most prominent climate change “hot-spots.” Parts of this distinctive region are included in several Coordinated Regional Downscaling Experiment (CORDEX) domains such as those for Europe, Africa, the Mediterranean, and the Middle East/North Africa. In this study, we compile and analyze monthly temperature and precipitation fields derived from regional climate model simulations performed over different CORDEX domains at a spatial resolution of 50 km. This unique multi-model, multi-scenario, and multi-domain “super-ensemble” is used to update projected changes for the Mediterranean region. The statistical robustness and significance of the climate change signal is assessed. By considering information from more than one CORDEX domains, our analysis addresses an additional type of uncertainty that is often neglected and is related to the positioning of the regional climate model domain. CORDEX simulations suggest a general warming by the end of the century (between 1 and 5 °C with respect to the 1986–2005 reference period), which is expected to be strongest during summer (up to 7 °C). A general drying (between 10 and 40%) is also inferred for the Mediterranean. However, the projected precipitation change signal is less significant and less robust. The CORDEX ensemble corroborates the fact that the Mediterranean is already entering the 1.5 °C climate warming era. It is expected to reach 2 °C warming well within two decades, unless strong greenhouse gas concentration reductions are implemented. The southern part of the Mediterranean is expected to be impacted most strongly since the CORDEX ensemble suggests substantial combined warming and drying, particularly for pathways RCP4.5 and RCP8.5.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Patrícia Palma ◽  
Alexandra Marchã Penha ◽  
Maria Helena Novais ◽  
Sofia Fialho ◽  
Ana Lima ◽  
...  

Nowadays, the Mediterranean freshwater systems face the threat of water scarcity, along with multiple other stressors (e.g., organic and inorganic contamination, geomorphological alterations, invasive species), leading to the impairment of their ecosystem services. All these stressors have been speeding up, due to climate variability and land cover/ land use changes, turning them into a big challenge for the water management plans. The present study analyses the physicochemical and phytoplankton biomass (chlorophyll-a) dynamics of a large reservoir, in the Mediterranean region (Alqueva reservoir, Southern Portugal), under diverse meteorological conditions and land cover/land use real scenarios (2017 and 2018). The most important stressors were identified and the necessary tools and information for a more effective management plan were provided. Changes in these parameters were further related to the observed variations in the meteorological conditions and in the land cover/land use. The increase in nutrients and ions in the water column, and of potentially toxic metals in the sediment, were more obvious in periods of severe drought. Further, the enhancement of nutrients concentrations, potentially caused by the intensification of agricultural activities, may indicate an increased risk of water eutrophication. The results highlight that a holistic approach is essential for a better water resources management strategy.


Sign in / Sign up

Export Citation Format

Share Document