scholarly journals COLLECTIVE POTENTIAL FOR HEAVY ION NUCLEAR REACTIONS

2020 ◽  
Vol 2 ◽  
pp. 117
Author(s):  
C. Syros

It is shown that the nuclear charge polarisation during heavy ion nuclear reactions enhances the secondary maximum of the collective energy surface and produces a secondary minimum in the deformation energy near R ~ Rmin + 2fm. The potential energy and mass formulas are given as a function of A and Z. It has been shown that charge polarisation without shape deformation and indeed of the prolate type does not produce any secondary minimum. It is also seen that the relativity effect consists in shifting the secondary minimum towards higher rest excentricities. For deformation of the oblate type the collective potential has a similar form like that in the spherical case. Entry and exit channel collective potentials are also given for the case of strong nucléon transfer. The mass for the two-body interacting system has been calculated and for large distances it tends to the corresponding reduced mass. The present theory is based on a particular form of the single particle potential following from the scalar π-meson classical field theory.

1971 ◽  
Vol 32 (1) ◽  
pp. 7-9 ◽  
Author(s):  
J. Galin ◽  
D. Guerreau ◽  
M. Lefort ◽  
X. Tarrago

2017 ◽  
Vol 13 (2) ◽  
pp. 4678-4688
Author(s):  
K. A. Kharroube

We applied two different approaches to investigate the deformation structures of the two nuclei S32 and Ar36 . In the first approach, we considered these nuclei as being deformed and have axes of symmetry. Accordingly, we calculated their moments of inertia by using the concept of the single-particle Schrödinger fluid as functions of the deformation parameter β. In this case we calculated also the electric quadrupole moments of the two nuclei by applying Nilsson model as functions of β. In the second approach, we used a strongly deformed nonaxial single-particle potential, depending on Î² and the nonaxiality parameter γ , to obtain the single-particle energies and wave functions. Accordingly, we calculated the quadrupole moments of S32 and Ar36 by filling the single-particle states corresponding to the ground- and the first excited states of these nuclei. The moments of inertia of S32 and Ar36 are then calculated by applying the nuclear superfluidity model. The obtained results are in good agreement with the corresponding experimental data.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


Sign in / Sign up

Export Citation Format

Share Document