scholarly journals (p,γ) Reaction Cross Sections Relevant to the p process: First Results for the Se Isotopes

2020 ◽  
Vol 13 ◽  
pp. 161
Author(s):  
A. Lagoyannis ◽  
A. Spyrou ◽  
S. Harissopulos ◽  
S. Galanopoulos ◽  
R. Kunz ◽  
...  

Proton-capture reaction cross sections of Se isotopes were determined in the 1-6 MeV energy range by means of γ-angular distribution measurements as well as via the activation technique. In this report we compare our first cross-section results with statistical model calculations performed using various microscopic and phenomenological approaches of Optical Model Potentials and Nuclear Level Densities.

2020 ◽  
Vol 13 ◽  
pp. 153
Author(s):  
S. Galanopoulos ◽  
S. Harissopulos ◽  
J. W. Hammer ◽  
R. Kunz ◽  
P. Demetriou

Proton-capture reaction cross sections on the 86,87,88Sr isotopes have been determined at energies from 1.4 to 5 MeV by measuring γ-angular distributions at the 4 MV single-ended Dynamitron accelerator of the University of Stuttgart as well as at the 5 MV VdG Tandem accelerator of NCSR "Demokritos", Athens. In the former case an array of 4 HPGe detectors with relative efficiency εr≈100%, each shielded with BGO crystals, were used. In the case of the measurements carried out at "Demokritos" we used only one HPGe detector (εr≈80%) with no BGO shield. Cross sections ranging from 0.5 μb to 5 mb as well as the relevant S factors were obtained. The data were compared with statistical model calculations using the code MOST. In the calculations, various combinations of microscopic and phe- nomenological models of the nucleon-Nucleus Optical Model Potentials (OMP) and Nuclear Level Densities (NLD) were used and a good agreement between the data and theoretical predictions was found.


1995 ◽  
Vol 48 (1) ◽  
pp. 125
Author(s):  
A.J Morton ◽  
DG Sargood

Nuclear reaction cross sections derived from statistical-model calculations have been used in the calculation of thermonuclear reaction rates for 36 nuclei at temperatures that are representative of the interiors of evolving stars and supernovae as nucleosynthesis approaches the production of nuclei with N = 28. The statistical-model calculations used optical-model parameters in the particle channels which had been selected to give the best overall agreement between theoretical and experimental cross sections for reactions on stable target nuclei in the mass and energy ranges of importance for the stellar conditions of interest. The optical-model parameters used, and the stellar reaction rates obtained, are tabulated. Comparisons are made between these stellar rates and those from other statistical-model calculations in the literature.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 25
Author(s):  
Sema Küçüksucu ◽  
Mustafa Yiğit ◽  
Nils Paar

The (n,α) reaction contributes in many processes of energy generation and nucleosynthesis in stellar environment. Since experimental data are available for a limited number of nuclei and in restricted energy ranges, at present only theoretical studies can provide predictions for all astrophysically relevant (n,α) reaction cross sections. The purpose of this work is to study (n,α) reaction cross sections for a set of nuclei contributing in the weak s-process nucleosynthesis. Theory framework is based on the statistical Hauser-Feshbach model implemented in TALYS code with nuclear masses and level densities based on Skyrme energy density functional. In addition to the analysis of the properties of calculated (n,α) cross sections, the Maxwellian averaged cross sections are described and analyzed for the range of temperatures in stellar environment. Model calculations determined astrophysically relevant energy windows in which (n,α) reactions occur in stars. In order to reduce the uncertainties in modeling (n,α) reaction cross sections for the s-process, novel experimental studies are called for. Presented results on the effective energy windows for (n,α) reaction in weak s-process provide a guidance for the priority energy ranges in the future experimental studies.


2020 ◽  
Vol 227 ◽  
pp. 01008
Author(s):  
Sotirios Harissopulos ◽  
Eleni Vagena ◽  
Michail Axiotis ◽  
Artemis Spyrou ◽  
Georgios Provatas ◽  
...  

The cross sections of the 72Ge( α , γ)76Se and 1°7Ag(ρ, γ)1°8Cd reactions were measured at energies relevant to p-process nucleosynthesis. The new data, together with cross section results from our previous ( α , γ) measure-ments on 65Cu and 118Sn and other ( α , γ) cross-section data reported in lit-erature are compared with statistical model calculations performed using the latest version (1.9) of the statistical model code TALYS. In addition, the effect on these calculations of different combinations of the optical model potentials (OMPs), nuclear level densities (NLDs) and γ-ray strength functions (γSFs) entering the calculations was investigated.


2018 ◽  
Vol 184 ◽  
pp. 02015
Author(s):  
E. Strano ◽  
M. Mazzocco ◽  
A. Boiano ◽  
C. Boiano ◽  
M. La Commara ◽  
...  

We investigated the reaction dynamics induced by the 7Be,8B+208Pb collisions at energies around the Coulomb barrier. Charged particles originated by both the col- lisions were detected by means of 6 ΔE-Eres telescopes of a newly developed detector array. Experimental data were analysed within the framework of the Optical Model and the total reaction cross-sections were compared together and with the 6,7Li+208Pb colli-sion data. According to the preliminary results, 7Be nucleus reactivity is rather similar to the 7Li one whereas the 8B+208Pb total reaction cross section appears to be much larger than those measured for reactions induced by the other weakly-bound projectiles on the same target.


2019 ◽  
Vol 21 ◽  
pp. 160
Author(s):  
A. Kalamara ◽  
R. Vlastou ◽  
M. Diakaki ◽  
M. Kokkoris ◽  
M. Anastasiou ◽  
...  

The 241Am(n,2n)240Am reaction cross section has been measured at neutron beam energy 17.5 MeV, relative to the 27Al(n,α)24Na, 197Au(n,2n)196Au and 93Nb(n,2n)92mNb reference reaction cross sections, using the activation technique. The irradiation was carried out at the Van der Graaff 5.5 MV Tandem accelerator laboratory of NCSR “Demokritos” with monoenergetic neutron beam provided by means of the 3H(d,n)4He reaction, implementing a new Ti-tritiated target. The high purity Am target has been constructed at IRMM, Geel, Belgium and consisted of 40 mg 241Am in the form of AmO2 pressed into pellet with Al2O3 and encapsulated into Al container. Due to this high radioactivity (5 GBq), the Am target was enclosed in a Pb container for safety reasons. After the end of the irradiation, the activity induced by the neutron beam at the target and reference foils, was measured off-line by two 100%, a 50% and a 16% relative efficiency, HPGe detectors.


2020 ◽  
Vol 15 ◽  
pp. 104
Author(s):  
S. Galanopoulos ◽  
R. Vlastou ◽  
P. Demetriou ◽  
M. Kokkoris ◽  
C. T. Papadopoulos ◽  
...  

Systematic experimental and theoretical investigations of the 72,73Ge(n,p)72,73 Ga and 72,74Ge(n,α)69,71Znm reaction cross sections are presented in the energy range from thresh- old to about 17 MeV neutron energy. The above reaction cross sections were measured from 8.8 to 11.4 MeV by using the activation method, relative to the 27Al(n,α)24Na refer- ence reaction. The quasi-monoenergetic neutron beams were produced via the 2H(d,n)3He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR “Demokritos”. Statisti- cal model calculations using the code EMPIRE-II (version 2.19) taking into consideration pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature.


1989 ◽  
Vol 67 (9) ◽  
pp. 870-875 ◽  
Author(s):  
I. A. Rizvi ◽  
M. K. Bhardwaj ◽  
M. Afzal Ansari ◽  
A. K. Chaubey

The stacked foil activation technique and Ge(Li) γ-ray spectroscopy have been employed for the determination of the excitation functions, up to 60 MeV, of six reactions, 69Ga(α,n), (α,2n), (α,3n), (α,p3n); 71Ga(α,n) and (α,4n). Since natural gallium used as the target has two odd-mass stable isotopes of abundance, 69Ga(60.1%) and 71Ga(39.9%), their activation in some cases gives the same residual nucleus through different reaction channels, but with very different Q values. In such cases, the individual reaction cross sections are separated with the help of the ratio of their theoretical cross sections. A preliminary theoretical comparison with the preequilibrium geometry-dependent hybrid (GDH) model has been done using an initial exciton number no = 4 (2n + 2p + 0h), and general agreement was found for all reactions at high energies.


2017 ◽  
Vol 6 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Tarik Siddik

The excitation functions for (n, p) reactions from reaction threshold to 24 MeV on some important iron (Fe) group target elements (20 ≤ Z ≤ 28) for astrophysical (n, p) reactions such as Si, Ca, Sc, Ti, Cr, Fe, Co and Ni were calculated using TALYS-1.0 nuclear model code. The new calculations on the excitation functions of 28Si(n, p)28Al, 29Si(n, p)29Al, 42Ca(n, p)42K, 45Sc(n, p)45Ca, 46Ti(n, p)46Sc, 53Cr(n, p)53V, 54Fe(n, p)54Mn, 57Fe(n, p)57Mn, 59Co(n, p)59Fe, 58Ni(n, p)58Co and 60Ni(n, p)60Co reactions have been carried out up to 24 MeV incident neutron energy. In these calculations, the compound nucleus and pre-equilibrium reaction mechanism studied extensively. According to these calculations, we assume that these model calculations can be applied to some heavy elements, ejected into interstellar medium by dramatic supernova events.


Sign in / Sign up

Export Citation Format

Share Document