Nonequilibrium effects in α-particle induced reactions on gallium isotopes

1989 ◽  
Vol 67 (9) ◽  
pp. 870-875 ◽  
Author(s):  
I. A. Rizvi ◽  
M. K. Bhardwaj ◽  
M. Afzal Ansari ◽  
A. K. Chaubey

The stacked foil activation technique and Ge(Li) γ-ray spectroscopy have been employed for the determination of the excitation functions, up to 60 MeV, of six reactions, 69Ga(α,n), (α,2n), (α,3n), (α,p3n); 71Ga(α,n) and (α,4n). Since natural gallium used as the target has two odd-mass stable isotopes of abundance, 69Ga(60.1%) and 71Ga(39.9%), their activation in some cases gives the same residual nucleus through different reaction channels, but with very different Q values. In such cases, the individual reaction cross sections are separated with the help of the ratio of their theoretical cross sections. A preliminary theoretical comparison with the preequilibrium geometry-dependent hybrid (GDH) model has been done using an initial exciton number no = 4 (2n + 2p + 0h), and general agreement was found for all reactions at high energies.

1996 ◽  
Vol 74 (9-10) ◽  
pp. 618-625 ◽  
Author(s):  
H. B. Patel ◽  
M. S. Gadkari ◽  
Bhruna Dave ◽  
N. L. Singh ◽  
S. Mukherjee

Excitation functions of the reactions 107Ag[(α, n); (α, 2n); (α, αn); (α, α2n)] and,109Ag[(α, 2n); (α, 3n); (α, 4n); (α, α3n); (α, α4n)] were investigated up to 70 MeV by the stacked foil activation technique and Ge(Li) gamma-ray spectroscopy method. Since the natural silver used as the target has two odd mass stable isotopes of abundance 51.83% (107Ag) and 48.17% (109Ag), their activation in some cases gives the same residual nucleus through different reaction channels, but with very different Q values. In such cases, the individual reaction cross sections are separated with the help of the ratio of theoretical cross sections. The experimental cross sections were compared with the predictions of a pre-equilibrium hybrid model. The (α, xn) reactions are fairly well reproduced with initial exciton number n0 = 4(4p0h), whereas (α, αxn) reactions are underestimated in magnitude by a factor of five to six.


2004 ◽  
Vol 82 (3) ◽  
pp. 227-237
Author(s):  
N L Singh ◽  
M S Gadkari

Excitation functions of the reactions 185Re[(α,n); (α,2n); (α,3n)] and 187Re[(α,n); (α,2n); (α,3n); (α,4n)] were investigated up to 50 MeV using the stacked-foil activation technique and high-purity germanium γ-ray spectroscopy method. Since the natural rhenium used as a target has two odd-mass stable isotopes of abundance 37.4% (185Re) and 62.6% (187Re), their activation in some cases gives the same residual nucleus through different reaction channels, but with very different Q values. In such cases, the individual reaction cross sections are separated with the help of the ratio of theoretical cross sections. The experimental cross sections were compared with the theoretical predictions considering equilibrium as well as pre-equilibrium contributions using code ALICE/90. It was found that the initial exciton configuration n0 = 4 (4p0h) appears to give a good fit to the experimental data. To the best of our knowledge, the excitation functions for 185Re[(α,n); (α,2n); (α,3n)] and 187Re[(α,3n); (α,4n)] reactions were measured for the first time. PACS No.: 25.55.–e


2019 ◽  
Vol 21 ◽  
pp. 160
Author(s):  
A. Kalamara ◽  
R. Vlastou ◽  
M. Diakaki ◽  
M. Kokkoris ◽  
M. Anastasiou ◽  
...  

The 241Am(n,2n)240Am reaction cross section has been measured at neutron beam energy 17.5 MeV, relative to the 27Al(n,α)24Na, 197Au(n,2n)196Au and 93Nb(n,2n)92mNb reference reaction cross sections, using the activation technique. The irradiation was carried out at the Van der Graaff 5.5 MV Tandem accelerator laboratory of NCSR “Demokritos” with monoenergetic neutron beam provided by means of the 3H(d,n)4He reaction, implementing a new Ti-tritiated target. The high purity Am target has been constructed at IRMM, Geel, Belgium and consisted of 40 mg 241Am in the form of AmO2 pressed into pellet with Al2O3 and encapsulated into Al container. Due to this high radioactivity (5 GBq), the Am target was enclosed in a Pb container for safety reasons. After the end of the irradiation, the activity induced by the neutron beam at the target and reference foils, was measured off-line by two 100%, a 50% and a 16% relative efficiency, HPGe detectors.


2019 ◽  
Vol 23 ◽  
pp. 47
Author(s):  
A. Kalamara ◽  
M. Serris ◽  
A. Spiliotis ◽  
D. Sigalos ◽  
N. Patronis ◽  
...  

Cross sections of the 174Hf(n,2n)173Hf and 176Hf(n,2n)175Hf reactions have been experimentally determined relative to the 27Al(n,α)24Na reference reaction at incident neutron energies of 15.3 and 17.1 MeV by means of the activation technique. The irradiations were carried out at the 5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" with monoenergetic neutron beams provided via the 3H(d,n)4He reaction, using a new Ti-tritiated target of 373 GBq activity. In the determination of the 176Hf(n,2n)175Hf reaction cross section the contamination of the 174Hf(n,γ)175Hf and 177Hf(n,3n)175Hf reactions has been taken into account. Moreover, the neutron beam energy has been studied by means of Monte Carlo simulation codes and the neutron flux has been determined via the 27Al(n,α)24Na reference reaction.


2018 ◽  
Vol 4 ◽  
pp. 27 ◽  
Author(s):  
Roberto Capote ◽  
Andrej Trkov

Key reactions have been selected to compare JEFF-3.3 (CIELO 2) and IAEA CIELO (CIELO 1) evaluated nuclear data files for neutron induced reactions on 235U and 238U targets. IAEA CIELO evaluation uses reaction models to construct the evaluation prior, but strongly relied on differential data including all reaction cross sections fitted within the IAEA Neutron Standards project. The JEFF-3.3 evaluation relied on a mix of differential and integral data with strong contribution from nuclear reaction modelling. Differences in evaluations are discussed; a better reproduction of differential data for the IAEA CIELO evaluation is shown for key reaction channels.


1986 ◽  
Vol 92 (1-4) ◽  
pp. 97-100 ◽  
Author(s):  
Syed M. Qaim ◽  
Robert Wölfle ◽  
Gerhard Stöklin ◽  
Mizanur Rahman ◽  
Sandor Sudar ◽  
...  

1968 ◽  
Vol 23 (12) ◽  
pp. 2080-2083 ◽  
Author(s):  
D. Hyatt ◽  
K. Lacmann

A Bendix time of flight mass spectrometer has been modified to enable the determination of some ion-molecule reaction cross sections in the energy range 1 — 100 eV.In the reactions studiedX+ + D2 → XD++Dwhere X may be Ar, N2 or CO, the results obtained agree with the predictions of the polarization theory in the range below 10 eV despite the fact that no intermediate complex is formed at these energies. Between about 10—50 eV where spectator stripping occurs the cross section follows an approximate E-l dependence. Above these energies the results are consistent with a transition to a region in which knock-on processes predominate and where an impulse approximation treatment would be valid.


1993 ◽  
Vol 08 (25) ◽  
pp. 2343-2350 ◽  
Author(s):  
N. N. ACHASOV ◽  
G. N. SHESTAKOV

In this letter, the necessity of a more precise estimation of the data on the reaction π-p → f2(1270)n → π0π0n is mentioned. The total cross-section σ(π-p → f2(1270)n) obtained from the data on the reaction π-p → π0π0n is shown to be approximately three times smaller than that following from the π-p → π+π-n data and also four times smaller than the prediction of the one-pion-exchange model. It is very important to resolve this disagreement because the results on the reaction π-p → f2(1270)n → π0π0n are used directly for the normalization of other reaction cross-sections and determination of branching ratios for some resonances.


Sign in / Sign up

Export Citation Format

Share Document