scholarly journals Optimisation and standardisation of a multiplex immunoassay of diverse Plasmodium falciparum antigens to assess changes in malaria transmission using sero-epidemiology

2019 ◽  
Vol 4 ◽  
pp. 26 ◽  
Author(s):  
Lindsey Wu ◽  
Tom Hall ◽  
Isaac Ssewanyana ◽  
Tate Oulton ◽  
Catriona Patterson ◽  
...  

Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX© qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX© platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing.  Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.

2020 ◽  
Vol 4 ◽  
pp. 26 ◽  
Author(s):  
Lindsey Wu ◽  
Tom Hall ◽  
Isaac Ssewanyana ◽  
Tate Oulton ◽  
Catriona Patterson ◽  
...  

Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX© qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX© platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing.  Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


2002 ◽  
Vol 35 (5) ◽  
pp. 487-490 ◽  
Author(s):  
Rozália F. Campos ◽  
Juracy B. Magalhães ◽  
Eliana A.G. Reis ◽  
Mitermayer G. Reis ◽  
Sonia G. Andrade

To evaluate the sensitivity of polymerase chain reaction (PCR) to reveal known number of trypomastigote in the blood of mice, three separate experiments were done. First: To eight samples of 500mul of normal mice blood, one aliquot of 1, 2, 3, 4, 5, 10, and 50 trypomastigotes respectively, were added. Second and third: 10 aliquots with 1 and 10 with 2 trypomastigotes were added to samples of 500mul of normal mice blood. Positive control: 500mul of blood containing 100,000 trypomastigotes. For kDNA minicircles amplification by PCR the primers:S35 and S36 were used. PCR revealed products of 330 b.p in the positive controls. When only one sample with the aliquots of 1 or 2 trypomastigotes was examined, results were negative; results were positive with aliquots of 3 to 50 trypomastigotes. In the 2nd and 3rd experiments, 9/10 aliquots with one parasite and 9/10 with 2 trypomastigotes were positive revealing a high sensitivity of this reaction. In conclusion, the presence of one single parasite in 500mul of blood, is enough for a positive PCR. This method could be used as a complement to the various parasitological cure tests in treated mice, when low volumes of blood are individually examined.


2020 ◽  
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

ABSTRACTBackgroundThe emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We therefore aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome.MethodsProteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a Covid-19 case cohort (n=48 hospitalized patients from Heidelberg) as well as n=85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial Enzyme-linked immunosorbent (ELISA) assays.ResultsA sensitivity of 100% (95% CI: 86%-100%) was achieved in Covid-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96%-100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response.ConclusionThis newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


2021 ◽  
Author(s):  
Mars Stone ◽  
Eduard Grebe ◽  
Hasan Sulaeman ◽  
Clara Di Germanio ◽  
Honey Dave ◽  
...  

SARS-CoV-2 serosurveys can estimate cumulative incidence for monitoring epidemics but require characterization of employed serological assays performance to inform testing algorithm development and interpretation of results. We conducted a multi-laboratory evaluation of 21 commercial high-throughput SARS-CoV-2 serological assays using blinded panels of 1,000 highly-characterized blood-donor specimens. Assays demonstrated a range of sensitivities (96%-63%), specificities (99%-96%) and precision (IIC 0.55-0.99). Durability of antibody detection in longitudinal samples was dependent on assay format and immunoglobulin target, with anti-spike, direct, or total Ig assays demonstrating more stable, or increasing reactivity over time than anti-nucleocapsid, indirect, or IgG assays. Assays with high sensitivity, specificity and durable antibody detection are ideal for serosurveillance. Less sensitive assays demonstrating waning reactivity are appropriate for other applications, including characterizing antibody responses after infection and vaccination, and detection of anamnestic boosting by reinfections and vaccine breakthrough infections. Assay performance must be evaluated in the context of the intended use.


Sign in / Sign up

Export Citation Format

Share Document