scholarly journals EAMA: Efficient Adaptive Migration Algorithm for Cloud Data Centers (CDCs)

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 690
Author(s):  
Muhammad Ibrahim ◽  
Muhammad Imran ◽  
Faisal Jamil ◽  
Yun Jung Lee ◽  
Do-Hyeun Kim

The rapid demand for Cloud services resulted in the establishment of large-scale Cloud Data Centers (CDCs), which ultimately consume a large amount of energy. An enormous amount of energy consumption eventually leads to high operating costs and carbon emissions. To reduce energy consumption with efficient resource utilization, various dynamic Virtual Machine (VM) consolidation approaches (i.e., Predictive Anti-Correlated Placement Algorithm (PACPA), Resource-Utilization-Aware Energy Efficient (RUAEE), Memory-bound Pre-copy Live Migration (MPLM), m Mixed migration strategy, Memory/disk operation aware Live VM Migration (MLLM), etc.) have been considered. Most of these techniques do aggressive VM consolidation that eventually results in performance degradation of CDCs in terms of resource utilization and energy consumption. In this paper, an Efficient Adaptive Migration Algorithm (EAMA) is proposed for effective migration and placement of VMs on the Physical Machines (PMs) dynamically. The proposed approach has two distinct features: first, selection of PM locations with optimum access delay where the VMs are required to be migrated, and second, reduces the number of VM migrations. Extensive simulation experiments have been conducted using the CloudSim toolkit. The results of the proposed approach are compared with the PACPA and RUAEE algorithms in terms of Service-Level Agreement (SLA) violation, resource utilization, number of hosts shut down, and energy consumption. Results show that proposed EAMA approach significantly reduces the number of migrations by 16% and 24%, SLA violation by 20% and 34%, and increases the resource utilization by 8% to 17% with increased number of hosts shut down from 10% to 13% as compared to the PACPA and RUAEE, respectively. Moreover, a 13% improvement in energy consumption has also been observed.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhou Zhou ◽  
Zhigang Hu ◽  
Keqin Li

The problem of high energy consumption is becoming more and more serious due to the construction of large-scale cloud data centers. In order to reduce the energy consumption and SLA violation, a new virtual machine (VM) placement algorithm named ATEA (adaptive three-threshold energy-aware algorithm), which takes good use of the historical data from resource usage by VMs, is presented. In ATEA, according to the load handled, data center hosts are divided into four classes: hosts with little load, hosts with light load, hosts with moderate load, and hosts with heavy load. ATEA migrates VMs on heavily loaded or little-loaded hosts to lightly loaded hosts, while the VMs on lightly loaded and moderately loaded hosts remain unchanged. Then, on the basis of ATEA, two kinds of adaptive three-threshold algorithm and three kinds of VMs selection policies are proposed. Finally, we verify the effectiveness of the proposed algorithms by CloudSim toolkit utilizing real-world workload. The experimental results show that the proposed algorithms efficiently reduce energy consumption and SLA violation.


2020 ◽  
Vol 21 (2) ◽  
pp. 159-172
Author(s):  
Nithiya Baskaran ◽  
Eswari R

The unbalanced usage of resources in cloud data centers cause an enormous amount of power consumption. The Virtual Machine (VM) consolidation shuts the underutilized hosts and makes the overloaded hosts as normally loaded hosts by selecting appropriate VMs from the hosts and migrates them to other hosts in such a way to reduce the energy consumption and to improve physical resource utilization. Efficient method is needed for VM selection and destination hosts selection (VM placement). In this paper, a CPU-Memory aware VM placement algorithm is proposed for selecting suitable destination host for migration. The VMs are selected using Fuzzy Soft Set (FSS) method VM selection algorithm. The proposed placement algorithm considers both CPU, Memory, and combination of CPU-Memory utilization of VMs on the source host. The proposed method is experimentally compared with several existing selection and placement algorithms and the results show that the proposed consolidation method performs better than existing algorithms in terms of energy efficiency, energy consumption, SLA violation rate, and number of VM migrations.


2021 ◽  
Vol 11 (13) ◽  
pp. 5849
Author(s):  
Nimra Malik ◽  
Muhammad Sardaraz ◽  
Muhammad Tahir ◽  
Babar Shah ◽  
Gohar Ali ◽  
...  

Cloud computing is a rapidly growing technology that has been implemented in various fields in recent years, such as business, research, industry, and computing. Cloud computing provides different services over the internet, thus eliminating the need for personalized hardware and other resources. Cloud computing environments face some challenges in terms of resource utilization, energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively studied in the literature. The problem has been studied with different parameters and objectives. In this article, we address the problem of energy consumption and efficient resource utilization in virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in separate queues. In the next step, tasks are classified based on the intensities of the required resources. Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were performed to validate the proposed technique. Comparative results obtained on benchmark datasets are presented. The results show the effectiveness of the proposed algorithm over that of the other algorithms to which it was compared in terms of energy consumption, makespan, and load balancing.


Author(s):  
A. R. Mohazabiyeh ◽  
K. H. Amirizadeh

With the increasing expansion of cloud data centers and the demand for cloud services, one of the major problems facing these data centers is the “increasing growth in energy consumption ". In this paper, we propose a method to balance the burden of virtual machine resources in order to reduce energy consumption. The proposed technique is based on a four-adaptive threshold model to reduce energy consumption in physical servers and minimize SLA violation in cloud data centers. Based on the proposed technique, hosts will be grouped into five clusters: hosts with low load, hosts with a light load, hosts with a middle load, hosts with high load and finally, hosts with a heavy load. Virtual machines are transferred from the host with high load and heavy load to the hosts with light load. Also, the VMs on low hosts will be migrated to the hosts with middle load, while the host with a light load and hosts with middle load remain unchanged. The values of the thresholds are obtained on the basis of the mathematical modeling approach and the 𝐾-Means Clustering Algorithm is used for clustering of hosts. Experimental results show that applying the proposed technique will improve the load balancing and reduce the number of VM migration and reduce energy consumption.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


Sign in / Sign up

Export Citation Format

Share Document