scholarly journals Conceptual change and development on multiple time scales: From incremental evolution to origins

2014 ◽  
Vol 42 (2/3) ◽  
pp. 193-218 ◽  
Author(s):  
Joel Parthemore

In the context of the relationship between signs and concepts, this paper tackles some of the ongoing controversies over conceptual development and change – including the claim by some that concepts are not open to revision at all – taking the position that concepts pull apart from language and that concepts can be discussed on at least four levels: that of individual agent, community, society, and language. More controversially, it claims that concepts are not just inherently open to revision but that they, and the frameworks of which they form part, are in a state of continuous, if generally incremental, change: a position that derives directly from the enactive tradition in philosophy. Concepts, to be effective as concepts, must strike a careful balance between being stable enough to apply across suitably many contexts and flexible enough to adapt to each new context. The paper’s contribution is a comparison and contrast of conceptual development and change on four time scales: that of the day-to-day life of an individual conceptual agent, the day-to-day life of society, the lifetime of an individual agent, and the lifetime of society and the human species itself. It concludes that the relationship between concepts and experience (individual or collective) is one of circular and not linear causality.

2019 ◽  
Vol 11 (24) ◽  
pp. 7243 ◽  
Author(s):  
Zhifang Pei ◽  
Shibo Fang ◽  
Wunian Yang ◽  
Lei Wang ◽  
Mingyan Wu ◽  
...  

There are currently only two methods (the within-growing season method and the inter-growing season method) used to analyse the normalized difference vegetation index (NDVI)–climate relationship at the monthly time scale. What are the differences between the two methods, and why do they exist? Which method is more suitable for the analysis of the relationship between them? In this study, after obtaining NDVI values (GIMMS NDVI3g) near meteorological stations and meteorological data of Inner Mongolian grasslands from 1982 to 2015, we analysed temporal changes in NDVI and climate factors, and explored the difference in Pearson correlation coefficients (R) between them via the above two analysis methods and analysed the change in R between them at multiple time scales. The research results indicated that: (1) NDVI was affected by temperature and precipitation in the area, showing periodic changes, (2) NDVI had a high value of R with climate factors in the within-growing season, while the significant correlation between them was different in different months in the inter-growing season, (3) with the increase in time series, the value of R between NDVI and climate factors showed a trend of increase in the within-growing season, while the value of R between NDVI and precipitation decreased, but then tended toward stability in the inter-growing season, and (4) when exploring the NDVI–climate relationship, we should first analyse the types of climate in the region to avoid the impacts of rain and heat occurring during the same period, and the inter-growing season method is more suitable for the analysis of the relationship between them.


2018 ◽  
Author(s):  
Yan Liang ◽  
◽  
Daniele J. Cherniak ◽  
Chenguang Sun

2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


2021 ◽  
Vol 40 (9) ◽  
pp. 2139-2154
Author(s):  
Caroline E. Weibull ◽  
Paul C. Lambert ◽  
Sandra Eloranta ◽  
Therese M. L. Andersson ◽  
Paul W. Dickman ◽  
...  

Author(s):  
Jia-Rong Yeh ◽  
Chung-Kang Peng ◽  
Norden E. Huang

Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal’s complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.


Sign in / Sign up

Export Citation Format

Share Document