scholarly journals Differentiation of Multiple Alleles for Anthocyanin Color Character of Apiculus in Indica Rice Varieties. :Genetical Studies on Rice Plant, LXXXI

1981 ◽  
Vol 31 (3) ◽  
pp. 226-238 ◽  
Author(s):  
Koh-ichi MORI ◽  
Man-emon TAKAHASHI
1970 ◽  
Vol 19 (2) ◽  
pp. 185-197
Author(s):  
T.L. Aditya

An efficient protocol was developed for in vitro morphogenic ability along with plantlet regeneration of two Bangladeshi indica rice varieties (BR24 and BR26) via somatic embryogenesis by applying 50 mM NaCl stress in callus induction and suspension initiation media. Osmotic stress was induced by NaCl (50, 100, 150, 200 and 250 mM) on the cell growth in suspension maintenance media. In viability test stress adapted cells showed 85 - 95% viability up to 200 mM NaCl compared with stress shocked (MS1-50) and control (MS1-0) treatments. Higher stress adapted cells showed growth retardation and the induction of plasmolysis. For both genotypes somatic embryos were obtained in both MS based liquid and semisolid media with or without 50 and 100 mM NaCl. Cell suspension-derived micro-calli were partially desiccated (6 - 12 hr) and subsequently maintained in MS1 callus induction media supplemented with proline (12 mM), ABA (2 mg/l) and 0.6% phytagel in the presence or absence of 50 and 100 mM NaCl. Subsequently, desiccated somatic embryos were transferred in MS based regeneration media with or without 50 and 100 mM NaCl. Proline mediated callus was found to be more effective in embryo differentiation than ABA. Partial desiccation dramatically enhanced callus growth and partially increased regeneration percentage. BR24 showed a better regeneration response producing plantlets in presence of proline in control media while BR26 restored regeneration potential in the presence of ABA and 100 mM NaCl. Plantlets regenerated from salt stressed callus cultures were then grown in compost in a glasshouse and produced normal, fertile plants.  Key words: Indica rice, Cell suspension, Morphogenic, Regeneration D.O.I. 10.3329/ptcb.v19i2.5436 Plant Tissue Cult. & Biotech. 19(2): 185-197, 2009 (December)


2018 ◽  
Vol 127 ◽  
pp. 343-354 ◽  
Author(s):  
Anupama Anupama ◽  
Swati Bhugra ◽  
Brejesh Lall ◽  
Santanu Chaudhury ◽  
Archana Chugh

2020 ◽  
Vol 19 (12) ◽  
pp. 2983-2996
Author(s):  
Hao ZHANG ◽  
Wen-jiang JING ◽  
Jing-ju XU ◽  
Bing-ju MA ◽  
Wei-lu WANG ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yufang Xu ◽  
Li Zhang ◽  
Shujun Ou ◽  
Ruci Wang ◽  
Yueming Wang ◽  
...  

Abstract With global warming and climate change, breeding crop plants tolerant to high-temperature stress is of immense significance. tRNA 2-thiolation is a highly conserved form of tRNA modification among living organisms. Here, we report the identification of SLG1 (Slender Guy 1), which encodes the cytosolic tRNA 2-thiolation protein 2 (RCTU2) in rice. SLG1 plays a key role in the response of rice plants to high-temperature stress at both seedling and reproductive stages. Dysfunction of SLG1 results in plants with thermosensitive phenotype, while overexpression of SLG1 enhances the tolerance of plants to high temperature. SLG1 is differentiated between the two Asian cultivated rice subspecies, indica and japonica, and the variations at both promoter and coding regions lead to an increased level of thiolated tRNA and enhanced thermotolerance of indica rice varieties. Our results demonstrate that the allelic differentiation of SLG1 confers indica rice to high-temperature tolerance, and tRNA thiolation pathway might be a potential target in the next generation rice breeding for the warming globe.


Sign in / Sign up

Export Citation Format

Share Document