Multi-Mode Dynamically Switching Pedestrian Navigation Using Smart Phone Inertial Sensors

Author(s):  
Yu Liu ◽  
◽  
Yanping Chen ◽  
Mu Zhou ◽  
Yibing Wang ◽  
...  
Author(s):  
Xian Wang ◽  
Paula Tarrío ◽  
Ana María Bernardos ◽  
Eduardo Metola ◽  
José Ramón Casar

Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4117
Author(s):  
V. D. Ambeth Kumar ◽  
S. Malathi ◽  
Abhishek Kumar ◽  
Prakash M ◽  
Kalyana C. Veluvolu

To communicate efficiently with a prospective user, auditory interfaces are employed in mobile communication devices. Diverse sounds in different volumes are used to alert the user in various devices such as mobile phones, modern laptops and domestic appliances. These alert noises behave erroneously in dynamic noise environments, leading to major annoyances to the user. In noisy environments, as sounds can be played quietly, this leads to the improper masked rendering of the necessary information. To overcome these issues, a multi-model sensing technique is developed as a smartphone application to achieve automatic volume control in a smart phone. Based on the ambient environment, the volume is automatically controlled such that it is maintained at an appropriate level for the user. By identifying the average noise level of the ambient environment from dynamic microphone and together with the activity recognition data obtained from the inertial sensors, the automatic volume control is achieved. Experiments are conducted with five different mobile devices at various noise-level environments and different user activity states. Results demonstrate the effectiveness of the proposed application for active volume control in dynamic environments.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Miguel Ortiz ◽  
Mathieu De Sousa ◽  
Valerie Renaudin

The motivations, the design, and some applications of the new Pedestrian Dead Reckoning (PDR) navigation device, ULISS (Ubiquitous Localization with Inertial Sensors and Satellites), are presented in this paper. It is an original device conceived to follow the European recommendation of privacy by design to protect location data which opens new research toward self-contained pedestrian navigation approaches. Its application is presented with an enhanced PDR algorithm to estimate pedestrian’s footpaths in an autonomous manner irrespective of the handheld device carrying mode: texting or swinging. An analysis of real-time coding issues toward a demonstrator is also conducted. Indoor experiments, conducted with 3 persons, give a 5.8% mean positioning error over the 3 km travelled distances.


2012 ◽  
Vol 71 (3) ◽  
pp. 287-296 ◽  
Author(s):  
H. Leppäkoski ◽  
J. Collin ◽  
J. Takala

Sensors ◽  
2016 ◽  
Vol 16 (10) ◽  
pp. 1578 ◽  
Author(s):  
Xiaochun Tian ◽  
Jiabin Chen ◽  
Yongqiang Han ◽  
Jianyu Shang ◽  
Nan Li

2021 ◽  
Author(s):  
Chi-Shih Jao ◽  
Andrei M. Shkel

In pedestrian inertial navigation, one possible placement of Inertial Measurement Units (IMUs) is on a footwear. This placement allows to limit the accumulation of navigation errors due to the bias drift of inertial sensors and is generally a preferable placement of sensors to achieve the highest precision of pedestrian inertial navigation. However, inertial sensors mounted on footwear experience significantly higher accelerations and angular velocities during regular pedestrian activities than during more conventional navigation tasks, which could exceed Full Scale Range (FSR) of many commercial-off-the-shelf IMUs, therefore degrading accuracy of pedestrian navigation systems. This paper proposes a reconstruction filter to mitigate localization error in pedestrian navigation due to insufficient FSR of inertial sensors. The proposed reconstruction filter approximates immeasurable accelerometer's signals with a triangular function and estimates the size of the triangles using a Gaussian Process regression. To evaluate performance of the proposed reconstruction filter, we conducted two series of indoor pedestrian navigation experiments with a VectorNav VN-200 IMU and an Analog Device ADIS16497-3 IMU. In the first series of experiments, forces experienced by the IMUs did not exceed the FSRs of the sensors, while in the second series, the forces surpassed the FSR of the VN-200 IMU and saturated the accelerometer's readings. The saturated readings reduced the accuracy of estimated positions using the VN-200 by 1.34× and 3.37× along horizontal and vertical directions. When applying our proposed reconstruction filter to the saturated measurements, the navigation accuracy was increased by 5% horizontally and 50% vertically, as compared to using unreconstructed signals.


Sign in / Sign up

Export Citation Format

Share Document