scholarly journals Quantum Computation and Quantum Information by Michael E. Nielson and Isaac L. Chuang

2003 ◽  
Vol 1 (2) ◽  
pp. 120-121
Author(s):  
Neeraj Sinha

One of the most promising scieniifc of East century was the Computers. Computers of initial days were of very large size consisting vacuum tubes ond valves. This has taken over by sernicor-,ductor and transistors which were 0' smaller size and more efficient. The rapid growth in the semiconductor industry hos led to the present form computer on our desktop. This hos initiated the questions about the ultimate limit of this development. AS size Of computer chip is decreasing, if has been predicted by Moor's law that within next twenty year, the size Of a sing bit will be of the order of a single atom. Physical laws governing the atomic phenomena, such cs quantum mechanics, are very different from macroscopic laws. so the computers operating on atomic level will not be Same cs pæsent days computers. This possibility has openee c completely new field of Quantum Computation.

2004 ◽  
Vol 213 ◽  
pp. 237-244
Author(s):  
Paul Davies

The race to build a quantum computer has led to a radical re-evaluation of the concept of information. In this paper I conjecture that life, defined as an information processing and replicating system, may be exploiting the considerable efficiency advantages offered by quantum computation, and that quantum information processing may dramatically shorten the odds for life originating from a random chemical soup. The plausibility of this conjecture rests, however, on life somehow circumventing the decoherence effects of the environment. I offer some speculations on ways in which this might happen.


2007 ◽  
Vol 17 (2) ◽  
pp. 177-183 ◽  
Author(s):  
THIERRY PAUL

We present a discussion concerning the opposition between discreteness and the continuum in quantum mechanics. In particular, it is shown that this duality was not restricted to the early days of the theory, but remains current, and features different aspects of discretisation. In particular, the discreteness of quantum mechanics is key for quantum information and quantum computation. We propose a conclusion involving a concept of completeness linking discreteness and the continuum.


Author(s):  
Majid Beshkar

The QBIT theory is an attempt toward solving the problem of consciousness based on empirical evidence provided by various scientific disciplines including Quantum mechanics, Biology, Information theory, and Thermodynamics. This theory formulates the problem of consciousness in the following four questions: (1) What is the nature of qualia? (2) How are qualia generated? (3) Why are qualia subjective? (4) Why does a quale have a particular quality or meaning?In sum, the QBIT theory proposes that (1) when certainty of an observer about an event exceeds a certain level, the observer becomes conscious of that event; (2) consciousness requires Maxwell demon-assisted quantum computation; (3) a quale is a dense pack of meaningful quantum information encoded in maximally entangled pure states; (4) a quale is generated when robustness of an internal representation exceeds a certain threshold; (5) the quality or meaning of a quale is determined by a process of information compression via the matching and unification of patterns; and (6) subjectivity of consciousness is due to the fact that maximally entangled pure states are private and unshareable.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Shi ◽  
Zhi-Rui Ma ◽  
Yi-Ying Xiao ◽  
Yun-Chao Yin ◽  
Wen-Mao Huang ◽  
...  

AbstractTuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowen Chen ◽  
Mi Peng ◽  
Xiangbin Cai ◽  
Yunlei Chen ◽  
Zhimin Jia ◽  
...  

AbstractMetal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure–performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 114
Author(s):  
Michael Silberstein ◽  
William Mark Stuckey ◽  
Timothy McDevitt

Our account provides a local, realist and fully non-causal principle explanation for EPR correlations, contextuality, no-signalling, and the Tsirelson bound. Indeed, the account herein is fully consistent with the causal structure of Minkowski spacetime. We argue that retrocausal accounts of quantum mechanics are problematic precisely because they do not fully transcend the assumption that causal or constructive explanation must always be fundamental. Unlike retrocausal accounts, our principle explanation is a complete rejection of Reichenbach’s Principle. Furthermore, we will argue that the basis for our principle account of quantum mechanics is the physical principle sought by quantum information theorists for their reconstructions of quantum mechanics. Finally, we explain why our account is both fully realist and psi-epistemic.


2007 ◽  
Vol 05 (06) ◽  
pp. 913-921
Author(s):  
JÁNOS A. BERGOU

This two-volume book is a great addition to the growing number of books devoted to the field. It is very clearly written by classroom professionals, always with the students in mind. The tutorial presentation is supplemented with a number of exercises whose solutions are also given at the end of each volume. The first volume can serve as a textbook for a one semester introductory course in quantum computation and quantum information. The second volume is more technical and brings the reader to the level of the current literature. It is useful for the specialist, can serve as a textbook for a more advanced course, or has its place as a reference book. In summary, I can highly recommend this book to anyone interested in this field.


2016 ◽  
Vol 66 (2) ◽  
Author(s):  
Maria Luisa Dalla Chiara ◽  
Roberto Giuntini ◽  
Roberto Leporini ◽  
Giuseppe Sergioli

AbstractQuantum computational logics represent a logical abstraction from the circuit-theory in quantum computation. In these logics formulas are supposed to denote pieces of quantum information (qubits, quregisters or mixtures of quregisters), while logical connectives correspond to (quantum logical) gates that transform quantum information in a reversible way. The characteristic holistic features of the quantum theoretic formalism (which play an essential role in entanglement-phenomena) can be used in order to develop a


2001 ◽  
Vol 15 (27) ◽  
pp. 1259-1264 ◽  
Author(s):  
M. ANDRECUT ◽  
M. K. ALI

The preparation of a quantum register in an arbitrary superposed quantum state is an important operation for quantum computation and quantum information processing. Here, we present an efficient algorithm which requires a polynomial number of elementary operations for initializing the amplitude distribution of a quantum register.


Sign in / Sign up

Export Citation Format

Share Document