PROGRESSIVE DAMAGE RESPONSE OF 3D WOVEN COMPOSITES VIA THE MULTISCALE RECURSIVE MICROMECHANICS SOLUTION WITH TAILORED FIDELITY

2021 ◽  
Author(s):  
BRETT A. BEDNARCYK ◽  
EVAN J. PINEDA ◽  
TRENTON M. RICKS ◽  
SUBODH K. MITAL

Progressive failure simulations have been performed for orthogonal 3D woven composites consisting of RTM6 resin matrix and AS4 carbon fibers. The Multiscale Recursive Micromechanics approach has been used, which, while being computationally efficient, captures the primary effects of the microstructure at each considered length scale. This approach also enables use of any micromechanics theory at any length scale, and herein, the fidelity of the chosen theories across the scales has been tailored to strike a balance with computational efficiency. The Mori-Tanaka method is employed at the lowest length scale, the Generalized Method of Cells is used at intermediate scales, and the High-Fidelity Generalized Method of Cells is used at the highest woven composite repeating unit cell scale. Furthermore, two different damage models, also with different levels of fidelity and efficiency, have been used for the resin material at the lowest length scale. Results for the mechanical behavior in response to loading in various directions are compared for the two damage models and with available test data.

2019 ◽  
Vol 208 ◽  
pp. 233-243 ◽  
Author(s):  
Gang Liu ◽  
Li Zhang ◽  
Licheng Guo ◽  
Feng Liao ◽  
Tao Zheng ◽  
...  

2012 ◽  
Vol 47 (6) ◽  
pp. 379-388 ◽  
Author(s):  
Omar Bacarreza ◽  
MH Aliabadi ◽  
Alfonso Apicella

A numerical model capable of dealing with progressive degradation of plain woven composites in a computationally efficient manner is presented in this article. A semi-analytical homogenization method is used to derive effective properties of the composite from the material properties of the constituents. The progressive failure is described using nonlocal continuum damage mechanics where the driving internal variable for the damage is the nonlocal strain. The model was implemented into Abaqus/Explicit, where the failure of a longitudinal tension and an open hole tension specimens were simulated in a multi-scale manner and verified experimentally.


2021 ◽  
pp. 152808372110395
Author(s):  
Liming Xu ◽  
Deng’an Cai ◽  
Chao Li ◽  
Xingyu Jin ◽  
Guangming Zhou

Three-dimensional (3D) woven composites have been widely used in structural components due to their excellent mechanical and near-net-shape properties. However, for some special applications, it is expected that 3D woven composites can be damaged at designated locations under a specific load. In this research work, a new kind of defect-prefabricated 3D woven composites (DP3DWCs) are designed, where defects are prefabricated by cutting weft or warp yarns in defect-free 3D woven composites (DF3DWCs). The tensile mechanical properties of the DF3DWCs and the DP3DWCs are investigated experimentally and numerically. The mesoscopic geometry models of the DF3DWCs and the DP3DWCs were established by multi-objective searching algorithm. The progressive damage models were established using the 3D Hashin criteria and the von Mises failure criterion. Numerical results agree well with the experimental data. The influence of the number of defect layers on the mechanical properties was also discussed. The obtained results indicate that the defects have little effect on the elastic modulus, while tensile strengths decrease linearly with the increase of the number of defect layers. Failure mechanisms of yarns and matrix in the non-defective and defective materials were studied, and the volume fraction of elements of each failure mode was computed and analysed.


2015 ◽  
Vol 131 ◽  
pp. 765-774 ◽  
Author(s):  
S. Dai ◽  
P.R. Cunningham ◽  
S. Marshall ◽  
C. Silva

Sign in / Sign up

Export Citation Format

Share Document