Microscopic residual stresses analysis and multi-objective optimization for 3D woven composites

Author(s):  
Qi Wang ◽  
Xufeng Yang ◽  
Haixin Zhao ◽  
Xiaowen Zhang ◽  
Guanglong Cao ◽  
...  
2021 ◽  
Author(s):  
ARTURO LEOS ◽  
KOSTIANTYN VASYLEVSKYI ◽  
IGOR TSUKROV ◽  
TODD GROSS ◽  
BORYS DRACH

Manufacturing-induced residual stresses in carbon/epoxy 3D woven composites arise during cooling after curing due to a large difference in the coefficients of thermal expansion between the carbon fibers and the epoxy matrix. The magnitudes of these stresses appear to be higher in composites with high throughthickness reinforcement and in some cases are sufficient to lead to matrix cracking. This paper presents a numerical approach to simulation of development of manufacturing-induced residual stresses in an orthogonal 3D woven composite unit cell using finite element analysis. The proposed mesoscale modeling combines viscoelastic stress relaxation of the epoxy matrix and realistic reinforcement geometry (based on microtomography and fabric mechanics simulations) and includes imaginginformed interfacial (tow/matrix) cracks. Sensitivity of the numerical predictions to reinforcement geometry and presence of defects is discussed. To validate the predictions, blind hole drilling is simulated, and the predicted resulting surface displacements are compared to the experimentally measured values. The validated model provides an insight into the volumetric distribution of residual stresses in 3D woven composites. The presented approach can be used for studies of residual stress effects on mechanical performance of composites and strategies directed at their mitigation.


Author(s):  
Igor Tsukrov ◽  
Michael Giovinazzo ◽  
Kateryna Vyshenska ◽  
Harun Bayraktar ◽  
Jon Goering ◽  
...  

Finite element models of 3D woven composites are developed to predict possible microcracking of the matrix during curing. A specific ply-to-ply weave architecture for carbon fiber reinforced epoxy is chosen as a benchmark case. Two approaches to defining the geometry of reinforcement are considered. One is based on the nominal description of composite, and the second involves fabric mechanics simulations. Finite element models utilizing these approaches are used to calculate the overall elastic properties of the composite, and predict residual stresses due to resin curing. It is shown that for the same volume fraction of reinforcement, the difference in the predicted overall in-plane stiffness is on the order of 10%. Numerical model utilizing the fabric mechanics simulations predicts lower level of residual stresses due to curing, as compared to nominal geometry models.


Author(s):  
TODD GROSS ◽  
HILARY BUNTROCK ◽  
KOSTIANTYN VASYLEVSKYI ◽  
IGOR TSUKROV ◽  
BORYS DRACH

2013 ◽  
Vol 577-578 ◽  
pp. 253-256 ◽  
Author(s):  
Igor Tsukrov ◽  
Borys Drach ◽  
Harun Bayraktar ◽  
Jon Goering

This paper presents finite element modeling effort to predict possible microcracking of the matrix in 3D woven composites during curing. Three different reinforcement architectures are considered: a ply-to-ply weave, a one-by-one and a two-by-two orthogonal through-thickness reinforcement. To realistically reproduce the as-woven geometry of the fabric, the data from the Digital Fabric Mechanics Analyzer software is used as input for finite element modeling. The curing processed is modeled in a simplified way as a uniform drop in temperature from the resin curing to room temperature. The simulations show that the amount of residual stress is strongly influenced by the presence of through-thickness reinforcement.


Author(s):  
Navid Ansaripour ◽  
Ali Heidari ◽  
Seyed Ali Eftekhari

Residual stresses and distortion in welded joints undermine the durability of the structure and prevent a correct assembly of the parts. The principal objective of this study is to find a solution to minimize the residual stresses and distortion induced by submerged arc welding process. Accordingly, first, a thermal simulation of the process was undertaken by the finite-element method, and the results were used to provide a mechanical solution. The mechanical solution determined residual stresses and distortion that were found to be consistent with experimental results. Next, drawing on the design of experiment method based on cooling time between first pass and second pass and the first and second pass welding speed, a set of training data was formed for the developed artificial neural network. The trained neural network was then used as input for the optimization algorithm. Single- and multi-objective Genetic Algorithm and single and multi-objective Harmony Search methods were used for optimization process. Results illustrate that artificial neural network and multi-objective optimization algorithms are excellent methods for optimizing the residual stresses and distortion caused by welding process. As it was proved in this study, the single-objective optimization of the welding process is effective in reducing both the residual stress and distortion. The double-objective optimization also contributed to reduce both residual stress and distortion with 4% (for residual stresses) and 26.56% (for distortion) in multi-objective Harmony Search which was the better algorithm based on the solution time. Given the contradiction of the residual stresses and distortion in the welding process, the double-objective algorithm was found to be less successful in minimizing the two target functions relative to the case with the two optimized separately.


Sign in / Sign up

Export Citation Format

Share Document