scholarly journals A Dual-motor Coupling Propulsion System Design and Control Strategy Optimization for an Electric Coach

Author(s):  
Wenwei Wang ◽  
Hong Pan ◽  
Cheng Lin ◽  
Jiang Yi ◽  
Sheng Yang
Author(s):  
Kai Wang ◽  
Xinping Yan ◽  
Yupeng Yuan

Nowadays, with the higher voice of ship energy saving and emission reduction, the research on energy efficiency management is particularly necessary. Energy efficiency management and control of ships is an effective way to improve the ship energy efficiency. In this paper, according to the new clean propulsion system configurations of 5000 tons of bulk carrier, the energy efficiency management control strategy of the clean propulsion system is designed based on the model of advanced brushless doubly-fed shaft generator, propulsion system using LNG/diesel dual fuel engine and energy consumption of the main engine for reducing energy consumption. The simulation model of the entire propulsion system and the designed control strategy were designed. The influence of the engine speed on the ship energy efficiency was analyzed, and the feasibility of the energy efficiency management control strategies was verified by simulation using Matlab/Simulink. The results show that the designed strategies can ensure the power requirement of the whole ship under different conditions and improve the ship energy efficiency and reduce CO2 emissions.


2019 ◽  
Author(s):  
Carlo Villante ◽  
Michele Anatone ◽  
Angelo De Vita ◽  
Fernando Ortenzi ◽  
Erminio Maria Ursitti

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Prashant Srinivasan ◽  
Sanketh Bhat ◽  
Manthram Sivasubramaniam ◽  
Ravi Methekar ◽  
Maruthi Devarakonda ◽  
...  

Abstract Large bore reciprocating internal combustion (IC) engines are used in a wide variety of applications such as power generation, transportation, gas compression, mechanical drives, and mining. Each application has its own unique requirements that influence the engine design and control strategy. The system architecture and control strategy play a key role in meeting the requirements. Traditionally, control design has come in at a later stage of the development process, when the system design is almost frozen. Furthermore, transient performance requirements have not always been considered adequately at early design stages for large engines, thus limiting achievable controller performance. With rapid advances in engine modeling capability, it has now become possible to accurately simulate engine behavior in steady-states and transients. In this paper, we propose an integrated model-based approach to system design and control of reciprocating engines and outline ideas, processes, and real-world case studies for the same. Key benefits of this approach include optimized engine performance in terms of efficiency, transient response, emissions, system and cost optimization, and tools to evaluate various concepts before engine build thus leading to significant reduction in development time and cost.


Author(s):  
Chenyu Wei ◽  
Shusheng Zang

Three-shaft gas turbine was applied to marine electric propulsion system. The dynamic performance and control strategy of the three-shaft marine electric propulsion gas turbine arrested investigator’s attention, because they are very different from that of single-shaft gas turbine due to the complicated rotor structure. In this study, a model of nonlinear differential equation set is built to calculate the dynamic performance of three-shaft gas turbine and a simulation model of three-shaft marine electric propulsion gas turbine is constructed using the platform of MATLAB/SIMULINK. An adaptive software is developed for three-shaft gas turbine simulation. The new matching problems and changing rules among parameters are investigated in the case of load rejection of marine electric propulsion system. Multi-closed loop control system, instead of traditional control system, is introduced in order to improve the system quality and safety.


Author(s):  
Pawel Malysz ◽  
Shahin Sirouspour

This paper presents a unified framework for system design and control in human-in-the-loop asymmetric robotic systems. It introduces a highly general teleoperation system configuration involving any number of operators, haptic interfaces, and robots with possibly different degrees of mobility. The proposed framework allows for mixed teleoperation/autonomous control of user-defined subtasks by establishing position/force tracking as well as kinematic constraints among relevant teleoperation control frames. The control strategy is hierarchical comprising of a high-level teleoperation coordinating controller and low-level joint velocity controllers. The approach utilizes idempotent, generalized pseudoinverse and weighting matrices in order to achieve new performance objectives that are defined for such asymmetric semi-autonomous teleoperation systems. Three layers of velocity-based autonomous control at different priority levels with respect to human teleoperation are integrated into the framework. A detailed analysis of system performance and stability is presented. Experimental results with a single-master/dual-slave system configuration demonstrate an application of the proposed system design and control strategy.


Sign in / Sign up

Export Citation Format

Share Document