scholarly journals Study on Mechanical Characteristics of Tunnel Structure with Cavities Behind Linings in Arch

Author(s):  
Sulei Zhang ◽  
Chang Liu
Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1951
Author(s):  
Xiao Xu ◽  
Chongbang Xu ◽  
Yang Zhang ◽  
Hualao Wang

The bearing capacity of the tunnel structure is the essential basis for the structural safety of tunnel engineering. Due to the unpredictability and uncertainty in the tunnel’s surrounding environment, a systematic and unambiguous study on the bearing capacity of the tunnel structure is still lacking. The analysis framework of the bearing capacity of the tunnel structure is discussed and a method describing the bearing capacity loss of the tunnel structure is proposed in this paper. Furthermore, the loss laws of the tunnel structure bearing capacity under various characteristic factors are preliminarily investigated, and suggestions on the research of bearing capacity are put forward. First, the current research contents and methods of the tunnel structure technical status, mechanical characteristics, and bearing performance (directly mentioned) are summarized, the relevant concepts related to tunnel structure bearing capacity are analyzed, and it is clarified that the bearing capacity loss of the tunnel structure can be considered according to the technical status of lining damage preliminary. Then, based on analysis of main causes and influence path of the bearing capacity loss, the influencing factors of the bearing capacity of the tunnel structure are attributed to external load action (i.e., all external causes acting on the tunnel structure in the form of external loads) and material deterioration (i.e., all internal causes leading to the decrease in mechanical properties such as structure strength/stiffness). Several typical factors are listed with specific examples, respectively. Considering the uncertainty of the absolute value of the bearing capacity caused by the surrounding environment of the tunnel, a method describing the bearing capacity of the tunnel structure using relative loss rate and relative value of index is proposed based on the current relevant analysis data of mechanical characteristics of the tunnel structure. Based on the given definitions and rules, the related data on the quantitative analysis of mechanical characteristics of lining structure reported in the literature are statistically analyzed again from the view of loss laws of the bearing capacity. Taking three factors including crack, insufficient lining thickness, and cavity as examples, the corresponding model of the bearing capacity loss is preliminarily analyzed and interpreted. The simplest linear model can be employed to preliminarily describe the relationship between defect indexes and relative loss rate of the bearing capacity, especially pertinent mechanical data collected from numerical analysis. Moreover, the loss laws of the bearing capacity in practical analysis and model tests (especially when the variation range of factors is wide) can be simulated by a logistic growth model. Through the analysis of the typical factor model, the key points of the research on the bearing capacity of the tunnel structure are discussed, and some suggestions are put forward for the follow-up related research.


2001 ◽  
Vol 120 (5) ◽  
pp. A112-A112 ◽  
Author(s):  
J CURRY ◽  
G SHI ◽  
J PANDOLFINO ◽  
R JOEHL ◽  
J BRASSEUR ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 441
Author(s):  
Marina Gumerova ◽  
Flur Ismagilov ◽  
Irek Khairullin ◽  
Viacheslav Vavilov ◽  
Oksana Yushkova ◽  
...  

2019 ◽  
Vol 23 (2) ◽  
pp. 193-198
Author(s):  
Monica Mironescu ◽  
Laura Fratila ◽  
Alexandru Hupert ◽  
Ion Dan Mironescu

Abstract This research investigates the physical-chemical, sensorial and mechanical characteristics of starch-based edible films incorporating three types of bee hive products: honey, propolis and bee bread, in concentrations varying from 1% to 3%, reported to starch. The results indicates an increasing of films moisture, water activity, ash content and acidity, in the order: honey<propolis<bee bread, all values increasing with the increasing of hive products percentage into the control film; aw is remaining at very low values, under 0.4. Sensorial analysis indicated honey as the better suited for improving taste and flavour and bee bread for increasing colour intensity of the films; the sensorial characteristics are maintained during 30 days of films storage, in all cases. Compared with the control starch-based film (which is elastic, brittle and hard), the films containing 2% bee hive products are elasto-plastic and more resistant to penetration, the resistance increasing in the order: bee bread<propolis<honey.


2019 ◽  
Author(s):  
Yamin Zhang ◽  
Lina Chen ◽  
Chongyang Hao ◽  
Xiaowen Zheng ◽  
Yixuan Guo ◽  
...  

For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors, potassium ions are pre-inserted into MnO<sub>2</sub> tunnel structure, the as-prepared K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16</sub> materials consist of <a>nanoparticles</a> and nanorods were prepared by facile high-temperature solid-state reaction. <a></a>The as-prepared materials were well studied andthey show outstanding electrochemical behavior. We assembled hybrid supercapacitors with commercial activated carbon (YEC-8A) as anode and K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16 </sub>as cathode. It has high energy densities and power densities. Li-ion capacitors reach a high energy density of 127.61 Wh kg<sup>-1 </sup>at the power density of 99.86 W kg<sup>-1</sup> and Na-ion capacitor obtains 170.96 Wh kg<sup>-1 </sup>at 133.79 W kg<sup>-1</sup>. In addition, the <a>hybrid supercapacitor</a>s demonstrate excellent cycling performance which maintain 97 % capacitance retention for Li-ion capacitor and 85 % for Na-ion capacitor after 10,000 cycles.


GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 158-165 ◽  
Author(s):  
Dr. Sarvesh PS Rajput

This study reported that the addition of nano-silica enhances the mechanical characteristics of concrete as its compressive, flexural and tensile split strengths are increased. As a comparison mixture to equate it along with nano-modified concrete, ordinary samples of Portland cement (OPC) have been utilized. Herein, upto 6.0 percent of OPC has been substituted by nanosilica. In fact, the introduction of nanosilica improves mechanical and microstructural characteristics of concrete by significantly (28 to 35%). The finding therefore, indicated that partly replacing OPC with up to 5 percent nanosilica increases the mechanical and microstructural properties cured up to ninety days as opposed to the standard OPC mix.


Sign in / Sign up

Export Citation Format

Share Document