Analysis of Bus Signal Priority Effect by BRT Stop Types: Focusing on Hannuri-daero, Sejong

Author(s):  
Minji Kim ◽  
◽  
Yohee Han ◽  
Youngchan Kim
Author(s):  
Bo Zhang ◽  
Qing Wang ◽  
Fen Liu ◽  
Lu Kang
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Takashi Osono ◽  
Shunsuke Matsuoka ◽  
Dai Hirose

The diversity and geographic pattern of ligninolytic fungi were investigated within the distribution range of an evergreen tree, Castanopsis sieboldii (Fagaceae), in Japan. Fungal isolates obtained from 18 sites in subtropical and temperate regions in Japan were classified into 50 operational taxonomic units in Ascomycota and Basidiomycota according to the base sequence of the rDNA internal transcribed spacer region. Ordination by nonmetric multidimensional scaling showed the separation of fungal compositions between the study sites which was significantly related to the latitude, longitude, and mean annual temperature (MAT) of the study sites. We applied variation partitioning to separate the magnitude of the climatic, spatial, and leaf property factors and found the roles of MAT and spatial factors in structuring fungal assemblages, suggesting the importance of both niche processes and such non-niche processes as priority effect and dispersal limitation. The bleached area on leaf litter was greater at sites with higher MAT and precipitation located at lower latitudes and at sites where some major ligninolytic fungi occurred at greater relative frequencies, indicating that not only the climatic conditions but also the biogeographic patterns of distribution of ligninolytic fungi influence the decomposition of lignin in leaf litter.


2015 ◽  
Vol 743 ◽  
pp. 774-779
Author(s):  
Q.L. Wang

Bus priority is the effective methods of reducing traffic jam in large and medium-sized cities. Application and assessment of bus signal priority is studied, bus signal priority whole scheme is put forward based on GPS pointing and intelligent dispatch by investigating the situation of No.36 bus waiting time at stops and intersections. Based on Zigbee active request bus signal priority, dataflow process under local request and central request is analyzed, the principle of bus signal priority on balanced distance headway is put forward, and adjustment of key features parameters realized combining with SCATS traffic signal control system. The application assessment shows that, there are average 651 priority requests and 286 priority buses every day, priority efficiency is 43.9%.The average speed of No.36 bus increased 15.8%, the delay time reduced 13.2%, the stopping times reduced 27%, the twice stop situation at intersections basically disappeared, average delay at each intersection increased 3%.


2015 ◽  
Vol 282 (1798) ◽  
pp. 20141896 ◽  
Author(s):  
Myrsini E. Natsopoulou ◽  
Dino P. McMahon ◽  
Vincent Doublet ◽  
John Bryden ◽  
Robert J. Paxton

There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee ( Apis mellifera ), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this ‘priority effect’ was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host–multi-parasite interactions as drivers of host–pathogen community structure.


Sign in / Sign up

Export Citation Format

Share Document