scholarly journals Impact of current good manufacturing practices and emission regulations and guidances on the discharge of pharmaceutical chemicals into the environment from manufacturing, use, and disposal.

2002 ◽  
Vol 110 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Ranga Velagaleti ◽  
Philip K Burns ◽  
Michael Gill ◽  
James Prothro
Planta Medica ◽  
2008 ◽  
Vol 74 (03) ◽  
Author(s):  
D Fabricant ◽  
V Whitsitt ◽  
C Reynolds ◽  
C Beehner ◽  
A Secrist ◽  
...  

Author(s):  
Dr. Akash S Changole ◽  
Mandip Goyal ◽  
Harish CR

Background: Quality control and the standardization of herbal medicines involve steps like standard source and quality of raw materials, good manufacturing practices and adequate analytical screening. These practices play a vital role in guaranting the quality and stability of herbal preparations. Chandrashakaladi Vataka is an Ayurvedic herbal formulation mentioned to be beneficial in Kushtha. Till date no published data is available on its analytical profile. Aim: To develop the Pharmacognostical and Phyto-chemical profile of Chandrashakaladi Vataka. Material and Methods: Chandrashakaladi Vataka was prepared as per classical method and analytical findings were recorded. Samples were subjected to organoleptic analysis, physico-chemical analysis and HPTLC examination by optimizing the solvent systems. Results and Conclusions: Pharmacognostical profile of Chandrashakaladi Vataka was established. Loss on drying, Ash value, Acid insoluble extract, Methanol soluble extract, Chandrashakaladi Vataka was found within prescribed limits. HPTLC profile of Chandrashakaladi Vataka revealed 12 spots at 254 nm and 13 spots at 366 nm.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3408
Author(s):  
Jingeun Song ◽  
Junepyo Cha

Internal combustion engine emissions are a serious worldwide problem. To combat this, emission regulations have become stricter with the goal of reducing the proportion of transportation emissions in global air pollution. In addition, the European Commission passed the real driving emissions–light-duty vehicles (RDE-LDV) regulation that evaluates vehicle emissions by driving on real roads. The RDE test is significantly dependent on driving conditions such as traffic or drivers. Thus, the RDE regulation has the means to evaluate driving dynamics such as the vehicle speed per acceleration (v·apos) and the relative positive acceleration (RPA) to determine whether the driving during these tests is normal or abnormal. However, this is not an appropriate way to assess the driving dynamics because the v⋅apos and the RPA do not represent engine load, which is directly related to exhaust emissions. Therefore, in the present study, new driving dynamic variables are proposed. These variables use engine acceleration calculated from wheel force instead of the acceleration calculated from the vehicle speed, so they are proportional to the engine load. In addition, a variable of driving dynamics during braking is calculated using the negative wheel force. This variable can be used to improve the accuracy of the emission assessment by analyzing the braking pattern.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 590
Author(s):  
Makiko Yamagami ◽  
Fumikazu Ikemori ◽  
Hironori Nakashima ◽  
Kunihiro Hisatsune ◽  
Kayo Ueda ◽  
...  

In Japan, various countermeasures have been undertaken to reduce the atmospheric concentration of fine particulate matter (PM2.5). We evaluated the extent to which these countermeasures were effective in reducing PM2.5 concentrations by analyzing the long-term concentration trends of the major components of PM2.5 and their emissions in Nagoya City. PM2.5 concentrations decreased by 53% over the 16-year period from fiscal years 2003 to 2018 in Nagoya City. Elemental carbon (EC) was the component of PM2.5 with the greatest decrease in concentration over the 16 years, decreasing by 4.3 μg/m3, followed by SO42− (3.0 μg/m3), organic carbon (OC) (2.0 μg/m3), NH4+ (1.6 μg/m3), and NO3− (1.3 μg/m3). The decrease in EC concentration was found to be caused largely by the effect of diesel emission control. OC concentrations decreased because of the effects of volatile organic compound (VOC) emission regulations for stationary sources and reductions in VOCs emitted by vehicles and construction machinery. NO3− concentrations decreased alongside decreased contributions from vehicles, construction machinery, and stationary sources, in descending order of the magnitude of decrease. Although these findings identify some source control measures that have been effective in reducing PM2.5, they also reveal the ineffectiveness of some recent countermeasures for various components, such as those targeting OC concentrations.


Drug Safety ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 261-272
Author(s):  
Kristof Huysentruyt ◽  
Oeystein Kjoersvik ◽  
Pawel Dobracki ◽  
Elizabeth Savage ◽  
Ellen Mishalov ◽  
...  

2021 ◽  
pp. 109158182110326
Author(s):  
Christina L. Burnett ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Ronald A. Hill ◽  
Curtis D. Klaassen ◽  
...  

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 47 Citrus peel-derived ingredients, which are most frequently reported to function in cosmetics as skin conditioning agents. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanical ingredients, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. Industry should use good manufacturing practices to limit impurities that could be present in botanical ingredients. The Panel concluded that Citrus peel-derived ingredients are safe in the present practices of use and concentration in both rinse-off and leave-on cosmetic products when formulated to be non-sensitizing and non-irritating, provided that leave-on products do not contain more than 0.0015% (15 ppm) 5-methoxypsoralen (5-MOP).


Sign in / Sign up

Export Citation Format

Share Document