scholarly journals Trends in PM2.5 Concentration in Nagoya, Japan, from 2003 to 2018 and Impacts of PM2.5 Countermeasures

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 590
Author(s):  
Makiko Yamagami ◽  
Fumikazu Ikemori ◽  
Hironori Nakashima ◽  
Kunihiro Hisatsune ◽  
Kayo Ueda ◽  
...  

In Japan, various countermeasures have been undertaken to reduce the atmospheric concentration of fine particulate matter (PM2.5). We evaluated the extent to which these countermeasures were effective in reducing PM2.5 concentrations by analyzing the long-term concentration trends of the major components of PM2.5 and their emissions in Nagoya City. PM2.5 concentrations decreased by 53% over the 16-year period from fiscal years 2003 to 2018 in Nagoya City. Elemental carbon (EC) was the component of PM2.5 with the greatest decrease in concentration over the 16 years, decreasing by 4.3 μg/m3, followed by SO42− (3.0 μg/m3), organic carbon (OC) (2.0 μg/m3), NH4+ (1.6 μg/m3), and NO3− (1.3 μg/m3). The decrease in EC concentration was found to be caused largely by the effect of diesel emission control. OC concentrations decreased because of the effects of volatile organic compound (VOC) emission regulations for stationary sources and reductions in VOCs emitted by vehicles and construction machinery. NO3− concentrations decreased alongside decreased contributions from vehicles, construction machinery, and stationary sources, in descending order of the magnitude of decrease. Although these findings identify some source control measures that have been effective in reducing PM2.5, they also reveal the ineffectiveness of some recent countermeasures for various components, such as those targeting OC concentrations.

2020 ◽  
Vol 12 (16) ◽  
pp. 2518
Author(s):  
Ying Zhang ◽  
Zhengqiang Li ◽  
Wenyuan Chang ◽  
Yuanxun Zhang ◽  
Gerrit de Leeuw ◽  
...  

In China, atmospheric fine particulate matter (PM2.5) pollution is a challenging environmental problem. Systematic PM2.5 measurements have started only in 2013, resulting in a lack of historical data which is a key obstacle for the analysis of long-term PM2.5 trends and forecasting the evolution over this hot region. Satellite data can provide a new approach to derive historical PM2.5 information provided that the column-integrated aerosol properties can adequately be converted to PM2.5. In this study, a recently developed formulation for the calculation of surface PM2.5 concentrations using satellite data is introduced and applied to reconstruct a PM2.5 time series over China from 2000 to 2015. The formulated model is also used to explore the PM2.5 driving factors related to anthropogenic or meteorological parameters in this historical period. The results show that the annually averaged PM2.5 over China’s polluted regions increased rapidly between 2004 and 2007 (with an average rate of 3.07 μg m−3 yr−1) to reach values of up to 61.1 μg m−3 in 2007, and decreased from 2011 to 2015 with an average rate of −2.61 μg m−3 yr−1, to reach a value of 46.9 μg m−3 in 2015. The analysis shows that the increase in PM2.5 before 2008 was mainly associated with increasing anthropogenic factors, further augmented by the effect of meteorological influences. However, the decrease in PM2.5 after 2011 is mainly attributed to the effect of pollution control measures on anthropogenic factors, whereas the effects of meteorological factors have continued to increase since 2000. The results also suggest that further reduction in anthropogenic emissions is needed to accelerate the decrease in PM2.5 concentrations to reach the target of 35 μg m−3 over major polluted areas in China before 2025.


2020 ◽  
Vol 189 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Jinjun Ran ◽  
Aimin Yang ◽  
Shengzhi Sun ◽  
Lefei Han ◽  
Jinhui Li ◽  
...  

Abstract Numerous studies have indicated that ambient particulate matter is closely associated with increased risk of cardiovascular disease, yet the evidence for its association with renal disease remains underrecognized. We aimed to estimate the association between long-term exposure to fine particulate matter, defined as particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and mortality from renal failure (RF) among participants in the Elderly Health Service Cohort in Hong Kong, China, from 1998 to 2010. PM2.5 concentration at the residential address of each participant was estimated based on a satellite-based spatiotemporal model. We used Cox proportional hazards regression to estimate risks of overall RF and cause-specific mortality associated with PM2.5. After excluding 5,373 subjects without information on residential address or relevant covariates, we included 61,447 participants in data analyses. We identified 443 RF deaths during the 10 years of follow-up. For an interquartile-range increase in PM2.5 concentration (3.22 μg/m3), hazard ratios for RF mortality were 1.23 (95% confidence interval: 1.06, 1.43) among all cohort participants and 1.42 (95% confidence interval: 1.16, 1.74) among patients with chronic kidney disease. Long-term exposure to atmospheric PM2.5 might be an important risk factor for RF mortality in the elderly, especially among persons with existing renal diseases.


2018 ◽  
Author(s):  
Xiaohong Xu ◽  
Tianchu Zhang ◽  
Yushan Su

Abstract. This study investigates temporal variations and long-term (1996–2015) trends of ground-level O3 (ozone) and its precursors, NOx (nitrogen oxides) and volatile organic compounds in Windsor, Ontario, Canada. During the 20-year study period, NOx, non-methane hydrocarbon concentrations and ozone formation potential decreased significantly by 58 %, 61 %, and 73 %, respectively, while O3 concentrations increased by 33 % (20.3 ppb in 1996 vs. 27 ppb in 2015). Our analysis revealed that the increased annual O3 concentrations in Windsor were due to (1) decreased O3 titration (by 50 % between 1996 and 2015) owing to declining nitric oxide concentrations, which is suggested by a slightly decreasing trend of annual mean total O3 concentrations after the titration effect is removed, (2) reduced local photochemical production of O3, because of dwindling precursor emissions, and (3) increased background O3 level that has more impact on the low-to-median concentrations. The net effect of those factors is decreasing peak O3 levels during the smog season from May to September, but an overall increasing trend of annual means. These results indicate that the emission control measures are effective in reducing peak ozone concentrations. However, challenges in lowering annual O3 levels call for long-term collaborative efforts in the region and around the globe.


2020 ◽  
Author(s):  
Yarong Peng ◽  
Hongli Wang ◽  
Qian Wang ◽  
Shengao Jing ◽  
Jingyu An ◽  
...  

Abstract. Long term measurements of air pollutants represented the footprints of emissions to some extent, which could provide useful and consecutive evolution of emissions. Both atmospheric concentrations and emissions of many air pollutants have been reported decreasing in the past decade due to the implement of various control measures in China, which were different for non-methane hydrocarbons (NMHCs) with increasing emissions as reported previously. The present study employed the long-term (2009–2015) NMHCs measurements as well as the related social and economic activities data in Shanghai, a megacity in eastern China, to explore the evolution of NMHCs emissions during the periods. The meteorology and photochemistry which might impact the NMHCs measurements were tested as negligible effects on an annual scale. As a result, NMHCs mixing ratio showed no statistic interannual changes, of which compositions varied significantly. This resulted a statistically decreasing trend of ozone formation potential by 3.8 % yr−1 (p 


2019 ◽  
Vol 19 (11) ◽  
pp. 7335-7345 ◽  
Author(s):  
Xiaohong Xu ◽  
Tianchu Zhang ◽  
Yushan Su

Abstract. This study investigates temporal variations and long-term (1996–2015) trends of ground-level O3 (ozone) and its precursors, NOx (nitrogen oxides), and volatile organic compounds in Windsor, Ontario, Canada. During the 20-year study period, NOx, non-methane hydrocarbon concentrations, and ozone formation potential decreased significantly by 58 %, 61 %, and 73 %, respectively, while O3 concentrations increased by 33 % (20.3 ppb in 1996 vs. 27 ppb in 2015). Our analysis revealed that the increased annual O3 concentrations in Windsor were due to (1) decreased O3 titration (by 50 % between 1996 and 2015) owing to declining nitric oxide concentrations, which is suggested by a slightly decreasing trend of annual mean total O3 concentrations after the titration effect is removed, (2) reduced local photochemical production of O3 because of dwindling precursor emissions, and (3) an increased background O3 level that has a greater impact on the low-to-median concentrations. The net effect of those factors is decreasing peak O3 levels during the smog season from May to September but an overall increasing trend of annual means. These results indicate that the emission control measures are effective in reducing peak ozone concentrations. However, challenges in lowering annual O3 levels call for long-term collaborative efforts in the region and around the globe.


2002 ◽  
Vol 45 (7) ◽  
pp. 21-29
Author(s):  
G. Vaes ◽  
J. Berlamont

In recent years, more emphasis has been put on source control measures in order to reduce the peak runoff from urban areas during wet weather conditions. This involves the construction of upstream storage and infiltration facilities and rainwater tanks for reuse in households and the revaluation of ditches. Because of the long emptying times of source control facilities, a long antecedent period of rainfall influences the design. In addition, these facilities most often have an outflow which is not linearly varying with the storage. Because of the high variability of the rainfall, the required storage volumes can therefore only be assessed well if continuous simulations with long rainfall series are performed. Based on long-term simulations design rules have been set-up for source control measures in Flanders.


Sign in / Sign up

Export Citation Format

Share Document