Maternal smoking during gestation, differential DNA methylation, and changes in lung function at age 18 years

2013 ◽  
Vol 2013 (1) ◽  
pp. 5886
Author(s):  
Wilfried Karmaus ◽  
Hongmei Zhang ◽  
John W Holloway ◽  
Hasan S Arshad ◽  
Susan Ewart
2015 ◽  
Vol 2015 (1) ◽  
pp. 2841
Author(s):  
Wilfried Karmaus ◽  
Hongmei Zhang ◽  
Hasan S. Arshad ◽  
John W Holloway ◽  
Wilfried Karmaus ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lyndsey E. Shorey-Kendrick ◽  
Cindy T. McEvoy ◽  
Shannon M. O’Sullivan ◽  
Kristin Milner ◽  
Brittany Vuylsteke ◽  
...  

Abstract Background Maternal smoking during pregnancy (MSDP) affects development of multiple organ systems including the placenta, lung, brain, and vasculature. In particular, children exposed to MSDP show lifelong deficits in pulmonary function and increased risk of asthma and wheeze. Our laboratory has previously shown that vitamin C supplementation during pregnancy prevents some of the adverse effects of MSDP on offspring respiratory outcomes. Epigenetic modifications, including DNA methylation (DNAm), are a likely link between in utero exposures and adverse health outcomes, and MSDP has previously been associated with DNAm changes in blood, placenta, and buccal epithelium. Analysis of placental DNAm may reveal critical targets of MSDP and vitamin C relevant to respiratory health outcomes. Results DNAm was measured in placentas obtained from 72 smokers enrolled in the VCSIP RCT: NCT03203603 (37 supplemented with vitamin C, 35 with placebo) and 24 never-smokers for reference. Methylation at one CpG, cg20790161, reached Bonferroni significance and was hypomethylated in vitamin C supplemented smokers versus placebo. Analysis of spatially related CpGs identified 93 candidate differentially methylated regions (DMRs) between treatment groups, including loci known to be associated with lung function, oxidative stress, fetal development and growth, and angiogenesis. Overlap of nominally significant differentially methylated CpGs (DMCs) in never-smokers versus placebo with nominally significant DMCs in vitamin C versus placebo identified 9059 candidate “restored CpGs” for association with placental transcript expression and respiratory outcomes. Methylation at 274 restored candidate CpG sites was associated with expression of 259 genes (FDR < 0.05). We further identified candidate CpGs associated with infant lung function (34 CpGs) and composite wheeze (1 CpG) at 12 months of age (FDR < 0.05). Increased methylation in the DIP2C, APOH/PRKCA, and additional candidate gene regions was associated with improved lung function and decreased wheeze in offspring of vitamin C-treated smokers. Conclusions Vitamin C supplementation to pregnant smokers ameliorates changes associated with maternal smoking in placental DNA methylation and gene expression in pathways potentially linked to improved placental function and offspring respiratory health. Further work is necessary to validate candidate loci and elucidate the causal pathway between placental methylation changes and outcomes of offspring exposed to MSDP. Clinical trial registration ClinicalTrials.gov, NCT01723696. Registered November 6, 2012. https://clinicaltrials.gov/ct2/show/record/NCT01723696.


Thorax ◽  
2020 ◽  
pp. thoraxjnl-2020-215866
Author(s):  
Ana I Hernandez Cordero ◽  
Chen Xi Yang ◽  
Maen Obeidat ◽  
Julia Yang ◽  
Julie MacIsaac ◽  
...  

IntroductionPeople living with HIV (PLWH) suffer from age-related comorbidities such as COPD. The processes responsible for reduced lung function in PLWH are largely unknown. We performed an epigenome-wide association study to investigate whether blood DNA methylation is associated with impaired lung function in PLWH.MethodsUsing blood DNA methylation profiles from 161 PLWH, we tested the effect of methylation on FEV1, FEV1/FVC ratio and FEV1 decline over a median of 5 years. We evaluated the global methylation of PLWH with airflow obstruction by testing the differential methylation of transposable elements Alu and LINE-1, a well-described marker of epigenetic ageing.ResultsAirflow obstruction as defined by a FEV1/FVC<0.70 was associated with 1393 differentially methylated positions (DMPs), while 4676 were associated with airflow obstruction based on the FEV1/FVC<lower limit of normal. These DMPs were enriched for biological pathways associated with chronic viral infections. The airflow obstruction group was globally hypomethylated compared with those without airflow obstruction. 103 and 7112 DMPs were associated with FEV1 and FEV1/FVC, respectively. No positions were associated with FEV1 decline.ConclusionA large number of DMPs were associated with airflow obstruction and lung function in a unique cohort of PLWH. Airflow obstruction in even relatively young PLWH is associated with global hypomethylation, suggesting advanced epigenetic ageing compared with those with normal lung function. The disturbance of the epigenetic regulation of key genes not previously identified in non-HIV COPD cohorts could explain the unique risk of COPD in PLWH.


2019 ◽  
Author(s):  
Emily Jamieson ◽  
Roxanna Korologou-Linden ◽  
Robyn E. Wootton ◽  
Anna L. Guyatt ◽  
Thomas Battram ◽  
...  

AbstractWhether smoking-associated DNA methylation has a causal effect on lung function has not been thoroughly evaluated. We investigated the causal effects of 474 smoking-associated CpGs on forced expiratory volume in one second (FEV1) in two-sample Mendelian randomization (MR) using methylation quantitative trait loci and genome-wide association data for FEV1. We found evidence of a possible causal effect for DNA methylation on FEV1 at 18 CpGs (p<1.2×10−4). Replication analysis supported a causal effect at three CpGs (cg21201401 (ZGPAT), cg19758448 (PGAP3) and cg12616487 (AHNAK) (p<0.0028). DNA methylation did not clearly mediate the effect of smoking on FEV1, although DNA methylation at some sites may influence lung function via effects on smoking. Using multiple-trait colocalization, we found evidence of shared causal variants between lung function, gene expression and DNA methylation. Findings highlight potential therapeutic targets for improving lung function and possibly smoking cessation, although large, tissue-specific datasets are required to confirm these results.


2016 ◽  
Vol 2 (3) ◽  
pp. dvw020 ◽  
Author(s):  
David A. Armstrong ◽  
Benjamin B. Green ◽  
Bailey A. Blair ◽  
Dylan J. Guerin ◽  
Julia F. Litzky ◽  
...  

2021 ◽  
Author(s):  
Ye-Eun Han ◽  
Nak-Hyeon Choi ◽  
Mi Jin Cho ◽  
Min Gu Kang ◽  
Young-Youl Kim

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Maaike de Vries ◽  
◽  
Ivana Nedeljkovic ◽  
Diana A. van der Plaat ◽  
Alexandra Zhernakova ◽  
...  

Abstract Background Active smoking is the main risk factor for COPD. Here, epigenetic mechanisms may play a role, since cigarette smoking is associated with differential DNA methylation in whole blood. So far, it is unclear whether epigenetics also play a role in subjects with COPD who never smoked. Therefore, we aimed to identify differential DNA methylation associated with lung function in never smokers. Methods We determined epigenome-wide DNA methylation levels of 396,243 CpG-sites (Illumina 450 K) in blood of never smokers in four independent cohorts, LifeLines COPD&C (N = 903), LifeLines DEEP (N = 166), Rotterdam Study (RS)-III (N = 150) and RS-BIOS (N = 206). We meta-analyzed the cohort-specific methylation results to identify differentially methylated CpG-sites with FEV1/FVC. Expression Quantitative Trait Methylation (eQTM) analysis was performed in the Biobank-based Integrative Omics Studies (BIOS). Results A total of 36 CpG-sites were associated with FEV1/FVC in never smokers at p-value< 0.0001, but the meta-analysis did not reveal any epigenome-wide significant CpG-sites. Of interest, 35 of these 36 CpG-sites have not been associated with lung function before in studies including subjects irrespective of smoking history. Among the top hits were cg10012512, cg02885771, annotated to the gene LTV1 Ribosome Biogenesis factor (LTV1), and cg25105536, annotated to Kelch Like Family Member 32 (KLHL32). Moreover, a total of 11 eQTMS were identified. Conclusions With the identification of 35 CpG-sites that are unique for never smokers, our study shows that DNA methylation is also associated with FEV1/FVC in subjects that never smoked and therefore not merely related to smoking.


Sign in / Sign up

Export Citation Format

Share Document