Environmental Epigenetics
Latest Publications


TOTAL DOCUMENTS

149
(FIVE YEARS 59)

H-INDEX

20
(FIVE YEARS 5)

Published By Oxford University Press

2058-5888

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Ke ◽  
Alexey A Tinkov ◽  
Antoly V Skalny ◽  
Aaron B Bowman ◽  
Joao B T Rocha ◽  
...  

Abstract Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the competence of academic performance and social wellness in children and adults. The causes of ADHD are unclear. Both genetic and environmental factors contribute to the development of ADHD. The behavioral impairments in ADHD are associated with epigenetic changes in genes that are important for neurodevelopment. Among environmental causes of ADHD, the neurotoxin methylmercury (MeHg) is associated with an increased risk for ADHD. Developing children are susceptible to neurotoxic effects of prenatal MeHg exposure. Human epidemiology studies have shown that prenatal MeHg exposure could invoke epigenetic changes in genes that are involved in ADHD. In addition, the pathogenesis of ADHD involves dopaminergic system, which is a target of developmental MeHg exposure. MeHg-induced alterations in the dopaminergic system have a profound impact on behavioral functions in adults. As a trace level of MeHg (around nM) can induce long-lasting behavioral alterations, potential mechanisms of MeHg-induced functional changes in the dopaminergic system may involve epigenetic mechanisms. Here, we review the relevant evidence on developmental MeHg exposures and the risk for ADHD. We also point out research gaps in understanding environmental causes of ADHD.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Vaiserman ◽  
Oleh Lushchak

Abstract Numerous human chronic pathological conditions depend on epigenetic modifications induced by environmental triggers throughout sensitive stages early in development. Developmental malnutrition is regarded as one of the most important risk factors in these processes. We present an overview of studies that the initiation and progression of many diseases are largely dependent on persisting epigenetic dysregulation caused by environmental insults early in life. For particular disorders, candidate genes were identified that underlie these associations. The current study assessed the most convincing evidence for the epigenetic link between developmental malnutrition and adult-life disease in the human population. These findings were obtained from quasi-experimental studies (so-called ‘natural experiments’), i.e. naturally occurring environmental conditions in which certain subsets of the population have differing levels of exposure to a supposed causal factor. Most of this evidence was derived on the DNA methylation level. We discussed DNA methylation as a key player in epigenetic modifications that can be inherited through multiple cell divisions. In this Perspective article, an overview of the quasi-experimental epidemiological evidence for the role of epigenetic mechanisms in the developmental programming by early-life undernutrition is provided.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Julia Oldenburg ◽  
Maria Fürhacker ◽  
Christina Hartmann ◽  
Philipp Steinbichl ◽  
Rojin Banaderakhshan ◽  
...  

Abstract 4,4ʹ-Isopropylidenediphenol (bisphenol A, BPA), a chemical substance that is widely used mainly as a monomer in the production of polycarbonates, in epoxy resins, and in thermal papers, is suspected to cause epigenetic modifications with potentially toxic consequences. Due to its negative health effects, BPA is banned in several products and is replaced by other bisphenols such as bisphenol S and bisphenol F. The present study examined the effects of BPA, bisphenol S, bisphenol F, p,pʹ-oxybisphenol, and the BPA metabolite BPA β-d-glucuronide on the expression of a set of microRNAs (miRNAs) as well as long interspersed nuclear element-1 methylation in human lung fibroblast and Caco-2 cells. The results demonstrated a significant modulation of the expression of different miRNAs in both cell lines including miR-24, miR-155, miR-21, and miR-146a, known for their regulatory functions of cell cycle, metabolism, and inflammation. At concentrations between 0.001 and 10 µg/ml, especially the data of miR-155 and miR-24 displayed non-monotonous and often significant dose–response curves that were U- or bell-shaped for different substances. Additionally, BPA β-d-glucuronide also exerted significant changes in the miRNA expression. miRNA prediction analysis indicated effects on multiple molecular pathways with relevance for toxicity. Besides, long interspersed nuclear element-1 methylation, a marker for the global DNA methylation status, was significantly modulated by two concentrations of BPA and p,pʹ-oxybisphenol. This pilot study suggests that various bisphenols, including BPA β-d-glucuronide, affect epigenetic mechanisms, especially miRNAs. These results should stimulate extended toxicological studies of multiple bisphenols and a potential use of miRNAs as markers.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael K Skinner ◽  
Eric E Nilsson

Abstract The current evolutionary biology theory primarily involves genetic alterations and random DNA sequence mutations to generate the phenotypic variation required for Darwinian natural selection to act. This neo-Darwinian evolution is termed the Modern Evolution Synthesis and has been the primary paradigm for nearly 100 years. Although environmental factors have a role in neo-Darwinian natural selection, Modern Evolution Synthesis does not consider environment to impact the basic molecular processes involved in evolution. An Extended Evolutionary Synthesis has recently developed that extends the modern synthesis to consider non-genetic processes. Over the past few decades, environmental epigenetics research has been demonstrated to regulate genetic processes and directly generate phenotypic variation independent of genetic sequence alterations. Therefore, the environment can on a molecular level through non-genetic (i.e. epigenetic) mechanisms directly influence phenotypic variation, genetic variation, inheritance and adaptation. This direct action of the environment to alter phenotype that is heritable is a neo-Lamarckian concept that can facilitate neo-Darwinian (i.e. Modern Synthesis) evolution. The integration of genetics, epigenetics, Darwinian theory, Lamarckian concepts, environment, and epigenetic inheritance provides a paradigm shift in evolution theory. The role of environmental-induced epigenetic transgenerational inheritance in evolution is presented to describe a more unified theory of evolutionary biology.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rose Schrott ◽  
Susan K Murphy ◽  
Jennifer L Modliszewski ◽  
Dillon E King ◽  
Bendu Hill ◽  
...  

Abstract Cannabis use alters sperm DNA methylation, but the potential reversibility of these changes is unknown. Semen samples from cannabis users and non-user controls were collected at baseline and again following a 77-day period of cannabis abstinence (one spermatogenic cycle). Users and controls did not significantly differ by demographics or semen analyses. Whole-genome bisulfite sequencing identified 163 CpG sites with significantly different DNA methylation in sperm between groups (P < 2.94 × 10−9). Genes associated with altered CpG sites were enriched with those involved in development, including cardiogenesis and neurodevelopment. Many of the differences in sperm DNA methylation between groups were diminished after cannabis abstinence. These results indicate that sustained cannabis abstinence significantly reduces the number of sperm showing cannabis-associated alterations at genes important for early development.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michael K Skinner

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eric Nilsson ◽  
Ingrid Sadler-Riggleman ◽  
Daniel Beck ◽  
Michael K Skinner

Abstract Environmental factors such as nutrition, stress, and toxicants can influence epigenetic programming and phenotypes of a wide variety of species from plants to humans. The current study was designed to investigate the impacts of hatchery spawning and rearing on steelhead trout (Oncorhynchus mykiss) vs the wild fish on a molecular level. Additionally, epigenetic differences between feeding practices that allow slow growth (2 years) and fast growth (1 year) hatchery trout were investigated. The sperm and red blood cells (RBC) from adult male slow growth/maturation hatchery steelhead, fast growth/maturation hatchery steelhead, and wild (natural-origin) steelhead were collected for DNA preparation to investigate potential alterations in differential DNA methylation regions (DMRs) and genetic mutations, involving copy number variations (CNVs). The sperm and RBC DNA both had a large number of DMRs when comparing the hatchery vs wild steelhead trout populations. The DMRs were cell type specific with negligible overlap. Slow growth/maturation compared to fast growth/maturation steelhead also had a larger number of DMRs in the RBC samples. A number of the DMRs had associated genes that were correlated to various biological processes and pathologies. Observations demonstrate a major epigenetic programming difference between the hatchery and wild natural-origin fish populations, but negligible genetic differences. Therefore, hatchery conditions and growth/maturation rate can alter the epigenetic developmental programming of the steelhead trout. Interestingly, epigenetic alterations in the sperm allow for potential epigenetic transgenerational inheritance of phenotypic variation to future generations. The impacts of hatchery exposures are not only important to consider on the fish exposed, but also on future generations and evolutionary trajectory of fish in the river populations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christine A Rygiel ◽  
Dana C Dolinoy ◽  
Kelly M Bakulski ◽  
Max T Aung ◽  
Wei Perng ◽  
...  

Abstract Early-life lead (Pb) exposure has been linked to adverse neurodevelopmental outcomes. Recent evidence has indicated a critical role of DNA methylation (DNAm) in cognition, and Pb exposure has also been shown to alter DNAm. However, it is unknown whether DNAm is part of the mechanism of Pb neurotoxicity. This longitudinal study investigated the associations between trimester-specific (T1, T2, and T3) maternal blood Pb concentrations, gene-specific DNAm in umbilical cord blood, and infant neurodevelopmental outcomes at 12 and 24 months of age (mental development index, psychomotor development index, and behavioral rating scale of orientation/engagement and emotional regulation) among 85 mother–infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study. In the mediation analysis for this pilot study, P < 0.1 was considered significant. DNAm at a locus in CCSER1 (probe ID cg02901723) mediated the association between T2 Pb on 24-month orientation/engagement [indirect effect estimate 4.44, 95% confidence interval (−0.09, 10.68), P = 0.06] and emotional regulation [3.62 (−0.05, 8.69), P = 0.05]. Cg18515027 (GCNT1) DNAm mediated the association of T1 Pb [−4.94 (−10.6, −0.77), P = 0.01] and T2 Pb [−3.52 (−8.09, −0.36), P = 0.02] with 24-month EMOCI, but there was a positive indirect effect estimate between T2 Pb and 24-month psychomotor development index [1.25 (−0.11, 3.32), P = 0.09]. The indirect effect was significant for cg19703494 (TRAPPC6A) DNAm in the association between T2 Pb and 24-month mental development index [1.54 (0, 3.87), P = 0.05]. There was also an indirect effect of cg23280166 (VPS11) DNAm on T3 Pb and 24-month EMOCI [2.43 (−0.16, 6.38), P = 0.08]. These associations provide preliminary evidence for gene-specific DNAm as mediators between prenatal Pb and adverse cognitive outcomes in offspring.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jennifer L M Thorson ◽  
Daniel Beck ◽  
Millissia Ben Maamar ◽  
Eric E Nilsson ◽  
Michael K Skinner

Abstract Plastic-derived compounds are one of the most frequent daily worldwide exposures. Previously a mixture of plastic-derived toxicants composed of bisphenol A, bis(2-ethylhexyl) phthalate, and dibutyl phthalate at low-dose exposures of a gestating female rats was found to promote the epigenetic transgenerational inheritance of disease to the offspring (F1 generation), grand-offspring (F2 generation), and great-grand-offspring (F3 generation). Epigenetic analysis of the male sperm was found to result in differential DNA methylation regions (DMRs) in the transgenerational F3 generation male sperm. The current study is distinct and was designed to use an epigenome-wide association study to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Observations indicate disease-specific DMRs called epimutations in the transgenerational F3 generation great-grand-offspring of rats ancestrally exposed to plastics. The epigenetic DMR biomarkers were identified for testis disease, kidney disease, and multiple (≥2) diseases. These disease sperm epimutation biomarkers were found to be predominantly disease-specific. The genomic locations and features of these DMRs were identified. Interestingly, the disease-specific DMR-associated genes were previously shown to be linked with each of the specific diseases. Therefore, the germline has ancestrally derived epimutations that potentially transmit transgenerational disease susceptibilities. Epigenetic biomarkers for specific diseases could be used as diagnostics to facilitate clinical management of disease and preventative medicine.


Sign in / Sign up

Export Citation Format

Share Document