A Machine Learning Approach to Estimate Hourly Exposure to Wildfire Smoke for Urban, Rural, and Remote Population

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jiayun Angela Yao ◽  
Michael Brauer ◽  
Sean Raffuse ◽  
Sarah B Henderson
2021 ◽  
Vol 10 (12) ◽  
pp. 830
Author(s):  
Fabián Santos-García ◽  
Karina Delgado Valdivieso ◽  
Andreas Rienow ◽  
Joaquín Gairín

Academic performance (AP) is explained by a multitude of factors, principally by those related to socioeconomic, cultural, and educational environments. However, AP is less understood from a spatial perspective. The aim of this study was to investigate a methodology using a machine learning approach to determine which answers from a questionnaire-based survey were relevant for explaining the high AP of secondary school students across urban–rural gradients in Ecuador. We used high school locations to construct individual datasets and stratify them according to the AP scores. Using the Boruta algorithm and backward elimination, we identified the best predictors, classified them using random forest, and mapped the AP classification probabilities. We summarized these results as frequent answers observed for each natural region in Ecuador and used their probability outputs to formulate hypotheses with respect to the urban–rural gradient derived from annual maps of impervious surfaces. Our approach resulted in a cartographic analysis of AP probabilities with overall accuracies around 0.83–0.84% and Kappa values of 0.65–0.67%. High AP was primarily related to answers regarding the academic environment and cognitive skills. These identified answers varied depending on the region, which allowed for different interpretations of the driving factors of AP in Ecuador. A rural-to-urban transition ranging 8–17 years was found to be the timespan correlated with achievement of high AP.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document