scholarly journals Estimation of Organic Soils Subsidence in the Vicinity of Hydraulic Structures- Case Study of a Subirrigation System in Central Poland

2020 ◽  
Vol 21 (8) ◽  
pp. 64-74
Author(s):  
Andrzej Brandyk ◽  
Ryszard Oleszczuk ◽  
Janusz Urbański
2021 ◽  
Vol 11 (1) ◽  
pp. 744-754
Author(s):  
Marzena Lendo-Siwicka ◽  
Grzegorz Wrzesiński ◽  
Katarzyna Pawluk

Abstract Improper recognition of the subsoil is the most common cause of problems in the implementation of construction projects and construction facilities failures. Most often, their direct cause is the mismatch of the scope of geotechnical diagnosis to the appropriate geotechnical category, or substantive errors, including incomplete or incorrect interpretation in the creation of a geological-engineering model and often overlooked hydrogeological conditions. In many cases, insufficient recognition and documentation of geotechnical and/or geological and engineering conditions leads to damage and construction failures, delays in consider construction, and the increase of the investment budget. That’s why, in order to avoid the above, particular attention should be paid to proper geotechnical and geological-engineering documentation at the design and construction stages. The selected example of the investment analyzed errors in the geological-engineering documentation, which mainly concerned the lack of recognition of locally occurring organic soils, the incorrectly determined location of the groundwater table and the degree of compaction of non-cohesive soils, and numerous errors of calculated values of soil uplift pressure. The detection of the errors presented in the paper made it possible to select the correct technology for the construction of the sanitary sewage system and to increase the thickness of the horizontal shutter made of jet grouting columns in the area of the excavation. In addition, the article discusses the principles of proper calculation of limit states and subsoil testing, which have a significant impact on the implementation of planned investments.


2018 ◽  
Vol 67 (1) ◽  
pp. 41-57
Author(s):  
Monika Dec ◽  
Marcin Polkowski ◽  
Tomasz Janik ◽  
Krystyna Stec ◽  
Marek Grad

Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 71
Author(s):  
Kambiz Meshkabadi ◽  
Yousef Zandi

Design of earth dams and their issues during and after construction is very important for residents downstream of the dam because of the potential risks and possible breakdowns. In the design of dams, various forces influence the dam body, including uplift pressure and piping phenomenon which should be considered in order to ensure the safety of the dam. Among the measures taken to prevent the washing away phenomenon, the reduction of the output gradient, and the leakage discharge from beneath the hydraulic structures, construction of the grout curtain and installation of the drainage are applicable. Therefore, in order to investigate the effect of various parameters such as the gradient angle of the grout curtain, length, and distance and the number of grout curtains, as well as the length of the drainage on the pressure and output gradient of the numerical models, were considered in current study. For this purpose, the SEEP/W software was used for modeling on Sattarkhan Dam as a case study. The results of the analysis showed that the use of the Qa’im grout curtain at the upstream of the dam has the highest resistance against the pressure and piping phenomenon. The results also showed that increase in the length of the curtain of the water seal increases safety against uplift and piping phenomenon. The use of further spacing between the two grout curtains under the core of the dam led to increase in overall pressure or reduction in safety against uplift pressure. Increase in the length of the horizontal drainage reduced the effects of uplift pressure and output gradient. Results show that period of 70 to 110 degree is appropriate for curtain angle and setting curtain in upstream of dam core with angle of 70 to 80 degree is optimum and economic. A length of 30 m is optimum for curtain. The number of 2 curtains is also optimum. Studying various scenarios of distance of 2 curtains in dam core indicates that distance of 6 m is optimum and also length of 18 m for horizontal drainage is optimum.


2001 ◽  
Vol 28 (2) ◽  
pp. 332-338 ◽  
Author(s):  
M Parvini ◽  
S Pietruszczak ◽  
V Gocevski

This paper describes the results of numerical analysis of a hydraulic structure subjected to seismic load. The paper is divided into two main parts. First, a numerical procedure for the description of mechanical effects of alkali-aggregate reaction in concrete structures is briefly outlined. Subsequently, a single unit of the Beauharnois power plant, situated in Quebec (Canada), is analysed in the context of seismic excitation. The numerical simulations are aimed at assessing the dynamic stability of this unit and investigating the evolution of damage associated with inception of macrocracks.Key words: alkali-aggregate reaction, plasticity, seismic analysis, hydraulic structures.


Sign in / Sign up

Export Citation Format

Share Document