scholarly journals Errors in documenting the subsoil and their impact on the investment implementation: Case study

2021 ◽  
Vol 11 (1) ◽  
pp. 744-754
Author(s):  
Marzena Lendo-Siwicka ◽  
Grzegorz Wrzesiński ◽  
Katarzyna Pawluk

Abstract Improper recognition of the subsoil is the most common cause of problems in the implementation of construction projects and construction facilities failures. Most often, their direct cause is the mismatch of the scope of geotechnical diagnosis to the appropriate geotechnical category, or substantive errors, including incomplete or incorrect interpretation in the creation of a geological-engineering model and often overlooked hydrogeological conditions. In many cases, insufficient recognition and documentation of geotechnical and/or geological and engineering conditions leads to damage and construction failures, delays in consider construction, and the increase of the investment budget. That’s why, in order to avoid the above, particular attention should be paid to proper geotechnical and geological-engineering documentation at the design and construction stages. The selected example of the investment analyzed errors in the geological-engineering documentation, which mainly concerned the lack of recognition of locally occurring organic soils, the incorrectly determined location of the groundwater table and the degree of compaction of non-cohesive soils, and numerous errors of calculated values of soil uplift pressure. The detection of the errors presented in the paper made it possible to select the correct technology for the construction of the sanitary sewage system and to increase the thickness of the horizontal shutter made of jet grouting columns in the area of the excavation. In addition, the article discusses the principles of proper calculation of limit states and subsoil testing, which have a significant impact on the implementation of planned investments.

1993 ◽  
Author(s):  
M.M. Chang ◽  
M. Szpakiewicz ◽  
R. Schatzinger ◽  
S. Jackson ◽  
Bijon Sharma ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 89-95
Author(s):  
Micol Palmieri ◽  
Ilaria Giannetti ◽  
Andrea Micheletti

Abstract This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the “tensile-integrity” property of cables and membrane together with what we call “floating-bending” of the arches, a term which is intended to recall the words “floating-compression” introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-and-spring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floating-bending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structures.


Author(s):  
Mostafa Namian ◽  
Mohammad Khalid ◽  
George Wang ◽  
Yelda Turkan

Unmanned aerial vehicles (UAVs) have gained their prevalent recognition in construction because of their exceptional advantages. Despite the increasing use of UAVs in the industry and their remarkable benefits, there are serious potential safety risks associated that have been overlooked. Construction is one of the most hazardous industries in the United States. In addition to the ordinary hazards normally present in dynamic construction workplaces, UAVs can expose workers to a wider range of never-before-seen safety risks that must be recognized and controlled. The industry is not equipped with safety measures to prevent potential accidents, because of scarce research on drone-associated hazards and risks. The aim of this research was to (1) identify the UAV-associated hazards in construction that may expose personnel and property to potential harms, and (2) study the relative impact of each hazard and the associated safety risks. In Phase I, the researchers conducted an extensive literature review and consulted with a construction UAV expert. In Phase II, the researchers obtained data from 54 construction experts validating and evaluating the identified hazards and risks. The results revealed that adopting UAVs can expose construction projects to a variety of hazards that the industry is not familiar with. “Collision with properties,”“collision with humans,” and “distraction” were identified as the top three safety risks. Moreover, the study introduces effective strategies, such as having qualified crew members, proper drone model selection, and drone maintenance, to mitigate the safety risks. Finally, a post-hoc case study was investigated and presented in this article.


2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


Religions ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 253
Author(s):  
Anna Sokolova

This article explores regional Buddhist monasteries in Tang Dynasty (618–907 CE) China, including their arrangement, functions, and sources for their study. Specifically, as a case study, it considers the reconstruction of the Kaiyuan monastery 開元寺 in Sizhou 泗州 (present-day Jiangsu Province) with reference to the works of three prominent state officials and scholars: Bai Juyi 白居易 (772–846), Li Ao 李翱 (772–841), and Han Yu 韓愈 (768–824). The writings of these literati allow us to trace the various phases of the monastery’s reconstruction, fundraising activities, and the network of individuals who participated in the project. We learn that the rebuilt multi-compound complex not only provided living areas for masses of pilgrims, traders, and workers but also functioned as a barrier that protected the populations of Sizhou and neighboring prefectures from flooding. Moreover, when viewed from a broader perspective, the renovation of the Kaiyuan monastery demonstrates that Buddhist construction projects played a pivotal role in the social and economic development of Tang China’s major metropolises as well as its regions.


2017 ◽  
Vol 10 (1) ◽  
pp. 5-31 ◽  
Author(s):  
Anna-Maija Hietajärvi ◽  
Kirsi Aaltonen ◽  
Harri Haapasalo

Purpose The effective management of inter-organizational integration is central to complex projects. Such projects pose significant challenges for integration, as organizations struggle with constantly changing inter-organizational interdependencies and must develop and adapt integration mechanisms to meet new demands. The purpose of this paper is to understand what kinds of integration mechanisms are used and how they are developed and adjusted during the infrastructure alliance projects. Design/methodology/approach This study provides empirical evidence of integration dynamics in project alliancing by analyzing two infrastructure alliance projects – a complex tunnel construction project and a railway renovation project. The research approach is an inductive case study. Findings This paper identifies integration mechanisms adopted in two case projects and three central triggers that led to changes in the integration mechanisms: project lifecycle phase, unexpected events and project team’s learning during the project. Practical implications Integration capability should be a precondition for alliance project organizations and requires the adoption of a wide range of integration mechanisms, as well as an ability to adjust those mechanisms in response to everyday dynamics and emergent situations. Originality/value Although unplanned contingencies and the responses to them represent important influences in organizations, there is limited amount of research on the dynamics of integration. The findings will be of value in supporting the management of inter-organizational integration in complex, uncertain and time-critical construction projects.


Sign in / Sign up

Export Citation Format

Share Document