scholarly journals Abnormal clonalities of B-lymphocytes in bovine leukemia virus-infected cattle with persistent lymphocytosis

Author(s):  
Shiho TAKEZAWA ◽  
Masaki MAEZAWA ◽  
Satoko TSUZUKU ◽  
Junko KAWAKAMI ◽  
Yoshinao OOUCI ◽  
...  
2021 ◽  
pp. 100201
Author(s):  
Yahia Ismail Khudhair ◽  
Ahmed Majeed Al-Shammari ◽  
Saleem Amin Hasso ◽  
Nahi Yaseen

2020 ◽  
Vol 48 ◽  
Author(s):  
Vinícius Bigolin Narciso ◽  
Silvana Giacomini Collet ◽  
Lilian Kolling Girardini ◽  
Fernando Nogueira Souza ◽  
Alcione Santa Catarina ◽  
...  

Background: Bovine leukemia virus (VLB) is an oncogenic deltaretrovirus associated with the development of persistent lymphocytosis (LP) and lymphosarcomas in cattle. LP is characterized by chronic elevation of the number of circulating lymphocytes, in the case of B lymphocytes. Several studies have described functional changes in various leukocyte populations in both blood and milk in VLB-infected animals. The impact of some chronic diseases of low lethality is aggravated by the emergence of comorbidities.The objective of the present study was to evaluate the oxidative metabolism and neutrophil phagocytosis of bovines of the Holtein breed naturally infected with the bovine leukemia virus (VLB).Materials, Methods & Results: In this study, 20 cows were divided into three groups: (NG) seven non-seroreagent animals for VLB and without hematological alterations; (GAL) eight seroreagent animals for VLB and without hematological alterations; and (GLP) five seroreagent animals for VLB with persistent lymphocytosis (LP). The oxidative metabolism of neutrophils was determined by the tetrazolium nitroblast reduction test stimulated or not with Zymosan particles. The percentage of neutrophils that phagocytosed Zymosan particle (s) was also evaluated. The data were initially evaluated for normality and homoscedasticity by the Shapiro-Wilk test. Then the ANOVA test followed by the Student-Newman-Keuls test was applied for the comparison between the NG, GAL and GLP animals. Comparison between the NG animals and the seroreagent animals for the VLB (GVLB) was also performed through the unpaired Student's t-test. The value of P < 0.05 was considered significant. No significant differences were observed in oxidative neutrophil metabolism in stimulated and non-stimulated samples with Zymosan particles nor in the percentage of neutrophils that phagocytosed Zymosan particle (s) among the three experimental groups. However, as no differences were observed between the seroreagent animals for VLB with and without LP, we chose to divide the animals into only two experimental, non-seroreagent and seroreagent groups for VLB. Thus, when non-seroreagent animals for the VLB were compared with the seroreagent animals for the VLB, which corresponds to the GAL and GLP animals, a significant difference was observed in relation to the oxidative metabolism by neutrophils stimulated with Zymosan particles.Discussion: Some viral diseases are often associated with increased susceptibility to new infections and several studies have evaluated the role of peripheral blood mononuclear cells in VLB infection, but few studies have investigated neutrophil function. Some authors, when evaluating phagocytic capacity and oxidative metabolism, respectively, of blood leukocytes from VLB-infected animals, observed that VLB-infected animals displaying LP had lower phagocytic capacity and lower production of Reactive Oxygen Species (ROS). Some studies have shown that oxygen consumption by neutrophils was higher in experimentally infected sheep by VLB after 15 weeks of challenge, but this species is not a natural host of the virus, since transmission does not occur between sheep and cattle and the pathogenesis of infection by VLB is more acute in sheep, a result of the lower latency period for LP development. Other authors, when evaluating the interference of VLB in milk leukocytes, concluded that VLB-infected animals show lower intensity of intracellular ROS production by flow cytometry in VLB-infected animals, especially animals expressing LP, despite the fact that percentage of milk neutrophils that produced ROS did not differ between groups. It can be concluded that VLB interferes in neutrophilic function with possible implications for the health of VLB-infected animals and may favor secondary infections.


1977 ◽  
Vol 59 (4) ◽  
pp. 1269-1271 ◽  
Author(s):  
Prem S. Paul ◽  
Kem A. Pomeroy ◽  
Anthony E. Castro ◽  
Donald W. Johnson ◽  
Charles C. Muscoplat ◽  
...  

2004 ◽  
Vol 78 (12) ◽  
pp. 6180-6189 ◽  
Author(s):  
Teresa Sanchez Alcaraz ◽  
Pierre Kerkhofs ◽  
Michal Reichert ◽  
Richard Kettmann ◽  
Luc Willems

ABSTRACT Viruses have developed strategies to counteract the apoptotic response of the infected host cells. Modulation of apoptosis is also thought to be a major component of viral persistence and progression to leukemia induced by retroviruses like human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV). Here, we analyzed the mechanism of ex vivo apoptosis occurring after isolation of peripheral blood mononuclear cells from BLV-infected sheep. We show that spontaneous apoptosis of ovine B lymphocytes requires at least in part a caspase 8-dependent pathway regardless of viral infection. Cell death is independent of cytotoxic response and does not involve the tumor necrosis factor alpha/NF-κB/nitric oxide synthase/cyclooxygenase pathway. In contrast, pharmaceutical depletion of reduced glutathione (namely, γ-glutamyl-l-cysteinyl-glycine [GSH]) by using ethacrynic acid or 1-pyrrolidinecarbodithioic acid specifically reverts inhibition of spontaneous apoptosis conferred indirectly by protective BLV-conditioned media; inversely, exogenously provided membrane-permeable GSH-monoethyl ester restores cell viability in B lymphocytes of BLV-infected sheep. Most importantly, intracellular GSH levels correlate with virus-associated protection against apoptosis but not with general inhibition of cell death induced by polyclonal activators, such as phorbol esters and ionomycin. Finally, inhibition of apoptosis does not correlate with the activities of GSH peroxidase and GSH reductase. In summary, our data fit into a model in which modulation of the glutathione system is a key event involved in indirect inhibition of apoptosis associated with BLV. These observations could have decisive effects during therapeutic treatment of δ-retroviral pathogenesis.


2019 ◽  
Vol 31 (4) ◽  
pp. 568-571
Author(s):  
Masataka Akagami ◽  
Shoko Oya ◽  
Yuki Kashima ◽  
Satoko Seki ◽  
Yoshinao Ouchi ◽  
...  

The European Community’s leukosis key (EC key) is a well-known hematologic method for detecting bovine leukemia virus (BLV) infection in dairy cattle. The key identifies infected cattle with persistent lymphocytosis via a combination of lymphocyte count (LC) and age. Using the EC key to identify BLV-infected Japanese black (JB) cattle is problematic, however, given the inherently lower LCs of JB cattle compared to dairy cattle. We analyzed the LC in BLV-positive and -negative JB cattle and estimated LC cutoff values by age using receiver operating characteristic curve analysis. Among the 716 JB blood samples collected, 452 (63%) JB cattle were confirmed as BLV-positive by an antibody ELISA for ≥1-y-old cattle and by real-time PCR for <1-y-old cattle. The cutoff values for the LC in each age group were calculated as 6.3 × 109/L for <1 y, 5.9 × 109/L for 1 to <2 y, 5.5 × 109/L for 2 to <3 y, 4.5 × 109/L for 3 to <6 y, 4.3 × 109/L for 6 to ≤10 y, and 3.7 × 109/L for >10 y. The sensitivity and specificity of the estimated cutoff values were 0.49 (95% confidence interval: 0.44–0.53) and 0.81 (0.75–0.85), whereas those of the EC key were 0.20 (0.16–0.24) and 0.99 (0.97–1.00). Our LC cutoff values for screening JB cattle for BLV infection appear to be preferable to those of the EC key.


Sign in / Sign up

Export Citation Format

Share Document